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Abstract

Template matching is a very topical issue in a wide range of imaging applica-

tions. Mathematical morphology offers the hit-or-miss transform, an operator

which has been successfully applied for template matching in binary images.

More recently, it has been extended to greyscale images and even to multi-

variate images. Nevertheless, these extensions, despite being relevant from a

theoretical point-of-view, might lack practical interest due to the inherent diffi-

culty to set up correctly the transform and its parameters (e.g. the structuring

functions). In this paper, we propose a new and more intuitive operator which

allows for morphological template matching in multivariate images from both a

spatial and spectral point of view. We illustrate the potential of this operator

in the context of remote sensing.
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1. Introduction

To face the increasing of amount, quality, size and diversity of images that

are produced everyday, automatic tools for information extraction are required.

Among these tools, template matching methods aim to extract relevant infor-

mation from various images for a given user. Template matching is thus a very

topical issue.

Among the imaging toolboxes available, mathematical morphology offers

various operators with intrinsic ability to deal with spatial information. Its most

famous template matching method, namely the hit-or-miss transform (HMT),

has been widely used since its first definition for binary images by Matheron

[11] and Serra [16]. This operator has been later extended to grey-level images,

leading to several definitions which have been recently reviewed and unified by

Naegel et al. [12]. We can even notice a first attempt to deal with multivariate

images [2], but it relies on a vectorial ordering which is not always easy to choose

among the many solutions available [1]. A more convenient way of setting up

a template matching operator is needed to make this operator really useful in

practice.

In a previous work [21], we have briefly introduced a new definition of the

hit-or-miss transform for multivariate images and illustrated its potential as a

template matching operator by a first study in remote sensing (related to coast-

line extraction). We extend here this preliminary work, by giving much more

theoretical background, comparing the proposed approach with existing works,

addressing the problem of efficiency. Moreover, we also propose some applica-

tions which illustrate the relevance of the proposed technique for morphological

template matching in multivariate images and we compare it to common tem-

plate matching methods.

This paper is organised as follows. In the next section, we recall existing

definitions of the hit-or-miss transform, which allow morphological template

matching on binary, greyscale and even multivariate images. We then introduce

in Sec. 3 a new definition which makes this operator easier to set up from a
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practical point-of-view and study this operator in the context of the theory of

mathematical morphology. In Sec. 4, we explain how this operator may be

used to achieve template matching in a wide range of contexts and illustrate its

abilities by various experiments in remote sensing. We finally conclude in Sec. 5

and indicate some future directions.

2. A Review on Morphological Template Matching

Mathematical morphology (MM) is a theoretical framework introduced more

than 40 years ago by Matheron [11] and Serra [16]. It aims to compute quan-

titative description of geometrical structures through spatial analysis. The rich

set of operators it offers has been found very useful for solving many tasks in

image processing and analysis for several decades [19].

In this section, we will review the solutions offered by mathematical morphol-

ogy to solve the problem of template matching, from the earliest works related

to binary images to most recent ones dealing with multivariate (e.g. multispec-

tral) images. We will also introduce the mathematical notations which will be

used throughout the rest of this paper.

2.1. Binary case

In binary images, mathematical morphology has been first formalised using

the set theory. In this framework, we consider that an image contains some

objects or foreground X and their complement or background Xc. Template

matching consists then in searching for areas of the image where both foreground

and background match predefined patterns, as illustrated in Fig. 1. Within the

scope of binary mathematical morphology, these patterns are also sets and called

structuring elements and template matching is performed through the hit-or-

miss transform, which is defined as

HMTbinary
F,G (X) = {x | (F )x ⊆ X, (G)x ⊆ Xc} (1)

where (·)x denotes the translation by x, while F and G represent respectively the

foreground and background structuring elements, with the condition F ∩G = ∅.
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In other words, the hit-or-miss transform returns pixels x such that both F

and G, when centered in x (i.e., (F )x and (G)x) match foreground X and

background Xc, respectively.

This operator can also be written as an intersection of two erosions, one

for the foreground (i.e. the hit) and one for the background (i.e. the miss).

Since erosion ε and dilation δ, the two elementary morphological operators, are

dual with respect to complementation (i.e. εF (X) = (δF̆ (Xc))c), the hit-or-miss

tranform can even be written using only foreground pixels:

HMTbinary
F,G (X) =εF (X) ∩ εG(Xc)

=εF (X) ∩
(
δĞ(X)

)c
=εF (X) \ δĞ(X)

(2)

with Ğ denoting the reflection, i.e. Ğ = {−x | x ∈ G}. We recall that erosion

and dilation are defined in the binary case as:

εF (X) =
⋂

b∈B
(X)−b (3)

δF (X) =
⋃

b∈B
(X)b (4)

F
G
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Figure 1: Binary HMT: a) zoom on the couple of SEs (foreground and back-

ground); b) binary lattice; c) intersections matched by the HMT.

2.2. Greyscale case

Within greyscale images, images are not composed of foreground and back-

ground anymore. Thus, set theory was replaced with lattice theory to design
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morphological operators [17]. We consider from now that an image is repre-

sented as a function w : E → T , where E ⊂ N2 denotes the spatial domain on

which pixel coordinates p = (x, y) are defined and T being the value domain

representing pixel values v. Thus the image w aims to assign a value v ∈ T to

every pixel p ∈ E.

Similarly to images, structuring elements may now be defined as functions

(sometimes called structuring functions) f : D → T , with D their spatial do-

main. But let us observe that very often, even with greyscale images, only flat

structuring elements are used. These structuring elements are defined as sets,

leading to an uniform processing of the neighbourhood of each pixel. Such flat

structuring elements are particular cases of structuring functions, where pixel

values are set to the additive identity of the value space (most often zero),

e.g. for a structuring element F we have the following structuring function:

∀ p ∈ F, f(p) = 0.

To perform morphological template matching in greyscale images, the hit-

or-miss transform has to be defined on such images. This may be achieved

by extending the previous definitions given for binary images, in particular

Eq. (2) where image complementation (which may be hard to define on greyscale

images) is not necessary:

HMTgrey
F,G (w) = εF (w)− δĞ(w) (5)

but some pixels may then be assigned negative values, i.e. when εF (w) is lower

than δĞ(w). To avoid such a case, all pixels where εF (w) < δĞ(w) may be set

to 0, as proposed by Soille [18]:

HMTSoille
F,G (w)(p) =

εF (w)(p)− δĞ(w)(p) if εF (w)(p) ≥ δĞ(w)(p)

0 otherwise

= max{εF (w)(p)− δĞ(w)(p), 0}

(6)
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We recall that erosion and dilation are defined in the greyscale case as:

εf (w)(p) = inf
q∈supp(f)

(w(p + q)− f(q)) (7)

δf (w)(p) = sup
q∈supp(f)

(w(p− q) + f(q)) (8)

with supp(f) denoting the support of function f .

Since greyscale images enable the use of structuring functions, more complex

definitions may be given, as by Ronse [15]:

HMTRonse
f,g (w)(p) =

εf (w)(p) if εf (w)(p) ≥ δg∗(w)(p)

⊥ otherwise

(9)

where g∗ denotes the dual of g, i.e. g∗(p) = −g(−p) and ⊥ denotes a specific

value (e.g., −∞ or 0) as it will be explained next. Apart from the use of struc-

turing functions (which leads to duality rather than reflection of the background

pattern), this definition also suggests not to use the difference between erosion

and dilation but rather the erosion itself as the result in each pixel matched by

the pair of structuring elements, as illustrated by Fig. 2. Nevertheless, these

two definitions share some common properties and behaviors, as pointed out by

Naegel et al. [12] who reviewed existing HMT definitions for greyscale images

and proposed a unified formulation.

In this unified formulation, the hit-or-miss transform is performed in two

steps. First, a fitting occurs to check if a given pixel matches the pattern defined

by the pair of structuring elements. This process shall ensure the translation

invariance property, i.e. the fitting is the same for w and all its possible (vertical

or greylevel) translations wt (with wt(p) = w(p) + t). The second step, where

each matched pixel is given a matching score as value (while unmatched pixels

are set to ⊥), is called the valuation step. Contrary to binary images where all

matched pixels are set to foreground while unmatched pixels are set to back-

ground, here the problem of value assignment of matched pixels is not trivial

and does not lead to a unique proposition. Indeed, while the definition from

Soille aims to measure how well a given image area fit the pair of structuring el-
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ements, the definition from Ronse makes possible to design morphological filters

based on HMT (e.g. HMT opening is obtained by dilating the HMT result).

a b c d e

Figure 2: Greyscale HMT : a) original image (64 × 64 pixels); b) couple of

structuring elements/functions used within the HMT; c) fitting result; valuation

result with Ronse’s (d) and Soille’s (e) definition (results are displayed in inverse

grey levels and for the sake of clarity, ⊥ value was replaced with 0).

Let us also note that other attempts have been considered to define greyscale

template matching within mathematical morphology [4]. However, we will not

review in further details these approaches since we are concerned with multi-

variate template matching.

2.3. Multivariate case

Compared to greyscale images, multivariate images bring a new dimension

related to spectral information. Indeed, in such images, the value space is not

monodimensional anymore but rather defined as a set of spectral dimensions

T = (Tb)b∈[1,n] with Tb being the value domain related to the color or spectral

band b. A multivariate image can then be written as a function w : E → T,

where each pixel p is assigned a set of spectral values v = (v1, . . . vn) for a n-

band image. In other words, a multivariate image is built from a set of greyscale

images, i.e. w = (w1, . . . , wn). If spectral bands are comparable (i.e. they have

the same definition domain), we can also represent a multivariate image by a

function w : E,B → T with B the set of spectral bands. Then, for each spectral

band b, a pixel p is assigned a greyscale value, i.e. w(p, b) = vb.

These two image representations are complementary and may be used to
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formulate the hit-or-miss transform (as well as other morphological operators)

for multivariate images. The easiest way to do so is to consider a multivariate

image w as a set of greyscale images wb and to apply the hit-or-miss transform

independently on each of these images. This approach is known as a marginal

strategy and may be written:

HMTmarginal
F,G (w) =

(
HMTgrey

F,G (w1), . . . , HMTgrey
F,G (wn)

)
(10)

with HMTgrey denoting any greyscale definition of the hit-or-miss transform

recalled in the previous section. Despite its relative simplicity, the marginal

strategy presents several drawbacks. First, due to the independent processing of

each spectral band, it completely ignores the correlated information which may

be spread on the different bands. Thus the template matching process analyses

every pixel without taking into account the full spectral information (or color)

it contains. Moreover, the processing of each band is usually done considering

the same set-up (i.e. a unique pair of structuring elements or functions are

used for all spectral bands), while the expected operator behavior may depend

on the spectral content of the image. Finally, there is no guarantee of vector

preservation since values which were not in the input image may appear in the

resulting image, thus producing new spectral signatures. Let us note however

that, even if this may be a major issue for many image processing tasks, template

matching does usually not suffer from this disadvantage except if the hit-or-miss

transform is used in a morphological filtering context.

To avoid the drawbacks induced by the marginal strategy, the vectorial strat-

egy may be involved. It requires selecting a given vectorial ordering which will

be used to determine the extrema within a set of vectors representing pixel val-

ues. While greyscale images contain scalar values which are easily comparable

using a unique natural ordering, there are plenty of vectorial orderings available

to (morphologically) process multivariate images and a recent survey has been

provided by Aptoula and Lefèvre [1]. Thus vectorial hit-or-miss transform has

been subsequently addressed by Aptoula et al. [2] and it has been shown that, to

apply morphological template matching on multivariate images using the hit-
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or-miss transform, the only requirement is to involve a vectorial ordering ≤v

which is translation invariant (i.e. ∀ v,v′, t ∈ T, v ≤v v′ ⇔ v+ t ≤v v′+ t).

Under this assumption, the vectorial hit-or-miss transform is a simple extension

of greyscale formulations, e.g. for Ronse and Soille definitions:

HMTSoille
F,G (w)(p) =


∥∥εF(w)(p)− δĞ(w)(p)

∥∥ if εF(w)(p) ≥v δĞ(w)(p)

⊥ otherwise
(11)

HMTRonse
f ,g (w)(p) =

εf (w)(p) if εf (w)(p) ≥v δg∗(w)(p)

⊥ otherwise

(12)

where (F,G) and (f ,g) respectively denote pairs of multivariate flat structuring

elements and multivariate structuring functions, which can nevertheless be re-

placed with their univariate alternative if we assume a uniform behavior of the

operator on all spectral bands. Let us note that, in the multivariate expression

of the Soille operator, the Euclidean norm ‖ · ‖ is used only as an illustrative

vector distance measure and any other measure may be involved. Depending

on the vectorial ordering involved in the comparison process, one can ensure

both usage of correlated information and preservation of input vectors. But

this strategy also needs to select an adequate vectorial ordering, which may be

tedious since a wide range of solutions are available [1]. Moreover, the behavior

of a given vectorial ordering, with respect to a multivariate image and a pair

of multivariate structuring elements/functions, is still to be understood. To

illustrate, Fig. 3 shows results obtained with two possible extensions of HMT

to multivariate data, considering a 5×5 square foreground SE surrounded by

a 1 pixel thin frame background SE. While most of the square template are

extracted with both methods, we can notice that marginal approach (left) fails

to identify the red square surrounded by a green background, conversely to the

vectorial approach based on lexicographical ordering (right). Let us however

precise that in the multivariate case, results strongly depend on the vectorial

ordering and might be hard to predict.

More recently, Velasco-Forero and Angulo [20] have introduced an original
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(a) (b) (c)

Figure 3: a) original image (256 × 256 pixels) ; b) result of a marginal HMT

(with a 5× 5 square foreground SE and a 1 pixel thin frame background SE) ;

c) result of a vectorial HMT using lexicographical ordering and the same SE.

solution where user knowledge (i.e. learning samples) is used to learn the vec-

torial ordering to be used within the HMT operator. By this way, there is no

need to select carefully a given vectorial ordering. Indeed, a reduced ordering

(sorting pixel values from background to foreground) is automatically inferred

from learning samples and is subsequently used in the HMT operator. Let us

note however that in some cases, a clear distinction between foreground and

background spectral values is not so easy to obtain, thus preventing us from

relying on such an ordering strategy.

We believe that multivariate definition of the hit-or-miss transform may still

be explored to propose intuitive tools to be used in practice. Thus, we introduce

in next section a new operator which allows to perform both spatial and spectral

template matching.

3. Spatial & Spectral Morphological Template Matching

In the previous section, we have recalled existing definitions of the hit-or-miss

transform for morphological template matching, from the early case of binary

images to more recent propositions related to greyscale and even multivariate

images. As we will discuss in this section, despite their theoretical interest,
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these works still have to show their practical interest for morphological template

matching in real scenarios when both spatial and spectral information have to

be taken into account. So we propose here a new and rather intuitive definition

of the hit-or-miss transform, which aims to be easily involved in a morphological

template matching process (as it will be illustrated in the next section). We will

also show that this original definition has its foundations within the standard

morphological framework. After having pointed out the differences between our

proposition and related works, we will finally discuss implementation issues.

3.1. On the practicability of existing HMT definitions for template matching

In the previous section, we have recalled the main proposed approaches for

template matching within the scope of mathematical morphology. While first

attempts were related to binary images, several authors have recently proposed

some extensions of the hit-or-miss transform to deal with greyscale or even mul-

tivariate images. However, these definitions, despite being theoretically sound,

lack practical interest when real-life applications of template matching in mul-

tivariate (e.g. color or multispectral) images are being considered.

Indeed, a first problem comes when template matching needs to rely on color

or spectral properties. While the marginal strategy is unable to take care of the

correlated information, adopting a vectorial strategy would require to select the

adequate vectorial ordering scheme for the problem under consideration, which

may be very tedious.

Moreover, since the hit-or-miss definition relies on only two structuring el-

ements (whatever the kind of images used: binary, greyscale, multivariate), it

may be unsuitable when dealing with complex templates. Thus, if the object or

feature to be matched is non-uniform and composed of several (i.e. more than

2) parts with different intensity or spectral properties (e.g. plane with white

fuselage, black wings parked on a grey airway), the hit-or-miss transform will

very probably fail to achieve the template matching task.

Another source of failure for the hit-or-miss transform when used in the

context of template matching is related to its intrinsic behavior. Since the fitting

11



step relies on the difference between the erosion and dilation results, it can only

achieve contrast-based template matching. When absolute intensity or spectral

information have to be taken into account in the template matching process,

existing definitions are not relevant anymore. Indeed, in some situations, prior

knowledge on the minimal or maximal spectral or intensity values of the sought

object may be available and they are worth being exploited. It is especially true

in the field of remote sensing where the spectral behaviour of the objects under

study may be well known.

All these limitations, when coming to practical usage of the hit-or-miss trans-

form for template matching, call for a new definition able to achieve morpho-

logical template matching in real-life situations. We will now introduce such a

new definition.

3.2. Towards a more intuitive definition

In multivariate images, template matching can benefit from user knowledge

both on spatial and spectral point of views. The main difficulty faced by tem-

plate matching operators (such as the morphological hit-or-miss transform) is

how to combine these two kinds of information. While the spatial information

such as the shape and the size of the sought object can be easily provided by a

user, its combination with spectral information is not trivial. Moreover, when

dealing with complex patterns, defining a single pair of structuring elements or

even functions may be very challenging for the user.

Thus we propose to consider another strategy to design the structuring el-

ements. When seeking for a predefined complex template, we believe that the

user is able to describe this template by a set of elementary units. Each of

these units describes a particular feature of the template, combining some spa-

tial and spectral information. More precisely, it consists in an expected spectral

response in some spatial area. To represent such a knowledge, we define each

particular feature by an extended structuring element as follows. The spatial

properties (shape and size of the area where spectral knowledge is known) are

provided by the structuring element similarly to existing hit-or-miss definitions.
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For each area, the spectral information consists of an expected intensity or value

in a given spectral band. Thus it can be either lower or higher bounded by a

predefined threshold. This results in several spectral properties defined for each

structuring element: the spectral band it is related to, the kind of threshold

used (either low or high threshold) and the threshold value.

Compared to the classic definition of the hit-or-miss transform, we consider

here a set of extended structuring elements (not necessarily only 2) to be in-

volved in the matching process. While our proposition manages spatial informa-

tion similarly to previous approaches, we attribute here a particular attention

to the spectral information. Indeed, contrary to existing multivariate strate-

gies where the structuring element is shared between all spectral bands (in the

marginal strategy) or is intrinsically multivariate (in the vectorial strategy), the

proposed extended structuring element is dedicated to a single spectral band.

By this way, the user can more easily design his set of structuring elements

based on his prior knowledge on the sought template. The use of low and high

thresholds helps to ensure the robustness of the template matching process, pro-

vides a more practical and realistic way to formulate prior spectral knowledge

(compared to contrast-based definitions) and may be seen somehow as a gener-

alisation of the initial hit-or-miss transform (where the notions of high and low

are intrinsically brought by the use of foreground and background structuring

elements, or erosion and dilation operators).

For a given extended structuring element k from the set K, we then write Fk

its spatial pattern (combining shape and size information), bk its spectral band,

tk its threshold or bound and φk its related operator (which can be either dilation

δ or erosion ε, corresponding respectively to a high or low threshold). The spatial

pattern is not expected to be constant over the different image bands. Let us

note that several extended structuring elements may consider the same spectral

band, under the assumption that they are consistent together (e.g. do not ask

the signal to be both lower and higher than the same threshold !). Conversely,

some image band might be of no interest for a given template matching task and

thus not be related to any SE. The fitting step consists in checking, for each
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analysed pixel, if its neighbourhood matches the set of extended structuring

elements. A pixel will be matched if and only if its neighbourhood fits all the

structuring elements, i.e. the following condition holds:

MHMTK(w)(p) fits iff ∀ k ∈ K,

εFk
(wbk)(p) ≥ tk, if φk = ε

δFk
(wbk)(p) < tk, otherwise

(13)

Other fusion options are available to merge the individual fitting results, but

the conjunction is of course to be preferred since it ensures that the proposed

operator possesses a consistent behavior with common morphological trans-

forms (but this fusion operator may be replaced with some others to improve

robustness, as it will be discussed further in this paper). Similarly to existing

definitions, the fitting is followed by a valuation step which aims at giving a

resulting value to all matched pixels (we assume that unmatched pixels are set

to ⊥). But contrary to previous works, here we do not deal with a single pair of

foreground/background (or erosion/dilation) structuring elements, but rather

have to deal with a whole set of extended structuring elements with various

properties (shape and size but also spectral band and threshold value, as well

as the threshold or operator type). Since our aim is to measure how well a pixel

(and its neighbourhood) fits a complete set of extended structuring elements,

we propose to first perform a valuation for each individual structuring element.

In order to measure the quality of each individual fitting procedure, we can rely

on the erosion or dilation result and the considered threshold, instead of both

erosion and dilation as in existing hit-or-miss definitions. Thus we propose to

compute the difference between the morphologically processed (either eroded or

dilated) pixel and the (either low or high) threshold, i.e.

MHMTk(w)(p) =

εFk
(wbk)(p)− tk, if φk = ε

tk − δFk
(wbk)(p), otherwise

(14)

thus ensuring a strict positive result for each matched pixel. However, we can-

not assume that in practice multivariate images will always contain comparable

spectral bands. In other words, the different spectral components of a multivari-
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ate image may not share the same value ranges. Thus, we propose to introduce

a normalisation step, resulting in a new definition for the individual valuation

step:

MHMTk(w)(p) =

(εFk
(wbk) (p)− tk)/

(
w+

bk
− tk

)
, if φk = ε

(tk − δFk
(wbk)(p)) /

(
tk − w−bk

)
, otherwise

=

(εFk
(wbk) (p)− tk)/

(
w+

bk
− tk

)
, if φk = ε

(δFk
(wbk)(p)− tk) /

(
w−bk − tk

)
, otherwise

(15)

with [w−i , w
+
i ] the predefined value range of the spectral band wi (and of course

the assumptions tk 6= w−bk and tk 6= w+
bk

). The normalisation is achieved by(
w+

bk
− tk

)
or
(
w−bk − tk

)
in order to obtain a valuation in [0;1]. Once the indi-

vidual valuations have been computed, it is then necessary to assign a unique

value to each matched pixel. As discussed in section 2.3, there is no unique

valuation scheme for multivariate hit-or-miss. Indeed, we can even keep the set

of individual valuations as the final result if we are interested in the quality of

the fit for each individual pattern. But usually, a single scalar value is expected

and we propose to build it by relying on a fusion rule. To ensure coherence

with the previous fitting step (where a conjunction rule has been used to merge

individual fitting results), we propose here to rely on a T-norm, e.g. either the

product or the minimum, leading respectively to the following definitions:

MHMTprod
K (w)(p) =


∏

k∈K

(
MHMTk(w)(p)

)
if ∀ k ∈ K, MHMTk(w)(p) > 0

0 otherwise

=
∏
k∈K

(
max

(
MHMTk(w)(p), 0

))
(16)

MHMTmin
K (w)(p) =


min
k∈K

(
MHMTk(w)(p)

)
if ∀ k ∈ K, MHMTk(w)(p) > 0

0 otherwise

= min
k∈K

(
max

(
MHMTk(w)(p)

)
, 0
)

(17)
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3.3. Definitions within the morphological framework

In the previous definition, we have shown in a comprehensive way how easy

it could be to define template matching parameters (i.e. structuring elements)

based on some prior spatial and spectral knowledge. Let us note that the pro-

posed hit-or-miss transform can also be defined within the scope of mathematical

morphology and we show here that it shares some common properties with other

definitions related to binary, grayscale and multivariate cases.

3.3.1. Link with binary morphology

In the previous section, we have introduced within our HMT definition the

use of thresholds as lower or higher bounds of user-provided spectral knowledge

for some spatial areas of the sought pattern. The thresholding process can

also be considered as a pre-processing step to be applied before the hit-or-

miss transform. In such a case, the thresholded binary images become then

compatible with binary mathematical morphology and we can study the link

between our proposed operator and binary HMT. To do so, for each extended

structuring element k, we define a binary thresholded image Xk from the input

multivariate image w as follows:

Xk = {p | wbk(p) ≥ tk} (18)

The fitting step of our proposed MHMT defined in Eq. (13) can then be

written

MHMTK(w)(p) fits iff ∀ k ∈ K, p ∈ HMT(Xk) (19)

where individual binary hit-or-miss results are given by

HMT(Xk) =

εFk
(Xk) if φk = ε

(δFk
(Xk))

c
otherwise

(20)

=

εFk
(Xk) if φk = ε

εFk
(Xc

k) otherwise

(21)
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As we can see, this formulation is coherent with the binary case given in

Eq. (2). Moreover, the binary HMT can simplify into a single erosion (i.e.

HMT(X ′k) = εFk
(X ′k)) if we take early care of the operator type φk during the

thresholding process:

X ′k = {p | wbk(p) ≥ tk if φk = ε, wbk(p) < tk if φk = δ} (22)

The fitting step of our proposed MHMT can then be seen as a binary HMT

applied on some thresholded images, thus making possible to introduce spectral

lower and higher bounds in the template matching process. Due to the mul-

tivariate input, the valuation step of our operator is more powerful than the

binary HMT one which only returns 0 for unmatched pixels and 1 for matched

pixels. Nevertheless, this binary behavior can be achieved by our operator, by

applying a thresholding step on the final result given by Eq. (16) or (17):

MHMTbinary
K (w)(p) =

1 if ∀ k ∈ K, MHMTk(w)(p) > 0

0 otherwise

(23)

3.3.2. Link with greyscale/marginal morphology

We have shown that the lower and higher spectral bounds involved in our

MHMT definition can be expressed as a preprocessing thresholding step before

using binary HMT. These bounds can also lead to the definition of structuring

functions, to be used within the scope of greyscale HMT definitions given in

Sec. 2.2. Since we are dealing with multivariate images, we rather consider here

multivariate structuring functions to be used following a marginal strategy (the

case of vectorial strategy will be discussed in Sec. 3.3.3).

More precisely, let us focus on the HMT definition from Soille given in

Eq. (6). Extension of this greyscale operator can be performed following the

marginal strategy given in Eq. (10). To avoid the same spatial processing of all

spectral bands during the template matching process, the pair of structuring el-

ements (F,G) may be replaced with a pair of multivariate structuring functions

(f,g), thus resulting in the following definition:

HMTmarginal Soille
f,g (w) =

(
HMTSoille

f1,g1 (w1), . . . , HMTSoille
fn,gn(wn)

)
(24)
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where

HMTSoille
fi,gi (wi)(p) =

εfi(wi)(p)− δg∗
i
(wi)(p) if εfi(wi)(p) ≥ δg∗

i
(wi)(p)

0 otherwise

= max{εfi(wi)(p)− δg∗
i
(wi)(p), 0} (25)

In our definition, we have rather considered a set K of extended structuring

elements, each being defined by shape Fk, a spectral band bk, a bound value

or threshold tk and a bound type (lower/higher) or operator φk. Nevertheless,

these extended structuring elements may be used all together to build as follows

the two multivariate structuring functions f and g required in Eqs. (24) and (25):

fi(p) = max
k∈K

(tk | p ∈ Fk, bk = i, φk = ε) (26)

gi(p) = min
k∈K

(tk | p ∈ Fk, bk = i, φk = δ) (27)

thus we consider for each spectral band, the most restrictive conditions (i.e. the

highest bound for erosion, the lowest bound for dilation) available in each loca-

tion of the template. Let us observe that this new formulation is equivalent to

the set of extended structuring elements given in Sec. 3.2. The fitting conditions

given in Eq. (13) can then be rewritten using f and g:

MHMTf ,g(w)(p) fits iff ∀ b ∈ B, εfb(wb)(p) ≥ 0 and δgb(wb)(p) < 0 (28)

which is a particular (i.e. more restrictive) case of the fitting condition given

in Eq. (25), since we require here a positive erosion result, a negative dilation

result and that the fitting occurs in all spectral bands addressed by the template

or set K.

3.3.3. Link with vectorial morphology

In this section, we study the links between our proposition and current

multivariate HMT approaches, both with the marginal and vectorial strategies.

To ensure a purely marginal fitting (i.e. when a pixel is matched or not in a

given spectral band only relying on values of its neighbourhood in this band),
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we should replace the condition given in Eq. (13) by

MHMTK(wi)(p) fits iff ∀ k ∈ K, bk = i

εFk
(wbk)(p) ≥ tk, if φk = ε

δFk
(wbk)(p) < tk, otherwise

(29)

which differs from Eq. (25) only by the use of additional thresholds set inter-

mediately between erosion and dilation.

Moreover, we can also replace valuation procedures we suggested in Eqs. (16)

and (17) by

MHMTK(wi)(p) =
min
k∈K

(MHMTk(wi)(p) | bk = i, φk = ε)

+ min
k∈K

(MHMTk(wi)(p) | bk = i, φk = δ)

if MHMTK(w) fits

0 otherwise

(30)

thus resulting in the same multivariate valuation as the one obtained by applying

the Soille HMT in a marginal fashion with structuring functions, Eq. (25).

Since multivariate images may be processed with vectorial morphology [1],

it is worth studying also the link with the vectorial HMT definition given by

Aptoula et al. [2]. To be compatible with the vectorial HMT definition recalled

in Eq. (11) (apart for the additional positive/negative constraint imposed on

erosion/dilation), we need to express our fitting condition given in Eq. (28)

with a vectorial ordering:

εf (w)(p) ≥v 0 >v δg(w)(p) (31)

where ≤v is simply defined as the componentwise (or marginal) ordering:

∀ v,v′ ∈ T, v ≤v v′ ⇔ ∀ i ∈ {1, . . . , n}, vi ≤ v′i (32)

which ensures the mandatory property of (vertical) translation invariance and

offers a behavior coherent with Eq. (28) when used in combination with the null

vector 0.
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Let us observe that, contrary to the standard marginal definition given in

Eq. (10), we are here not affected by the two drawbacks of the componentwise

ordering. Indeed, there is no need to preserve input vectors since erosion and

dilation multivariate results are not used directly, but either in a comparison

for the fitting or in a scalar projection for the valuation. Moreover, even if

correlated information among image channels is ignored during the computation

of erosion and dilation, the final comparison with the null vector requires all

image components to fulfill the given condition. It is thus a way to combine

information spread on the different image channels.

In order to achieve the same behavior as vectorial extensions of Soille and

Ronse operators given in Eq. (11), we may respectively apply the Euclidean

norm on the valuation result given in Eq. (30) and consider the following valu-

ation function:

MHMTK(wi)(p) =
min
k∈K

(MHMTk(wi)(p) | bk = i, φk = ε) if MHMTK(w) fits

⊥ otherwise

(33)

but in this last case (and in this last case only), the ordering in use may be

inadequate and provide false color and spectral signatures in the output image.

Nevertheless, Ronse valuation is rather dedicated to image filtering than to

template matching.

3.4. Comparison with related work

In this section, we review the main differences between our proposed MHMT

and related works [2, 15, 18].

First, the MHMT parameters (i.e. the templates or structuring elements) are

not expressed as a pair of multivariate structuring functions, but more easily

as a set of elementary units composed of spatial areas where knowledge of the

expected signal behavior (lower or higher bounded by a threshold) in a given

spectral band is known. It also allows to easily deal with spectral bands which

are not defined on the same value range.
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Next, the fitting step of our proposition is more constraining than existing

definitions which only requires that the erosion with the foreground structuring

element should be greater than the dilation with the background structuring

element. Indeed, we also impose that the former has to be positive while the

latter is negative. By doing so, we lose the vertical translation invariance (i.e.

MHMT(w) 6= MHMT(wt) where wt(p) = w(p) + t) present in existing HMT

definitions which are true contrast-based operators. But we are then able to

gather the relative contrast information with some information of absolute na-

ture, i.e. the minimum or maximum spectral values in some predefined spatial

areas of the template.

Moreover, since the two existing approaches for extending the hit-or-miss

transform to multivariate images present some drawbacks (the marginal strat-

egy ignore correlated information while the vectorial strategy needs to select

the appropriate vectorial ordering), we suggested an intermediate approach to

avoid these drawbacks. Applying the fitting individually on each spectral band

(or more precisely, with each extended structuring element) prevents us from

selecting a vectorial ordering, while merging these individual fitting steps in a

global one enable us (in some way) to take care of the correlated information

spread over the different image channels.

As far as the valuation is concerned, we propose several models which are

able to exploit individual fitting results. Moreover, these procedures may be

applied within a normalisation framework, thus making possible to deal with

multivariate images with heterogeneous spectral bands and to produce results

compatible with inputs of fuzzy or soft logic.

Finally, as expected, our MHMT can simplify in existing definitions when

applied on a single greylevel or binary images. Let us also observe that even in

the multivariate case, our operator will lead to a greyscale result, which can be

easily processed by the end-user (e.g. display, thresholding, etc). As we will see

next, the proposed definition also allows an efficient implementation.
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3.5. Implementation

We have previously given several formulations for the proposed multivari-

ate hit-or-miss transform. The intuitive definition, despite being less theoreti-

cally sound, leads to various optimisation schemes which will be presented here.

Together they lead to an efficient implementation of the HMT transform, in

particular for the fitting step (which is in fact the most important part of the

template matching process).

Contrary to a multivariate structuring element or function processed globally

as proposed in [2], here we can decompose the set of structuring elements into

elementary patterns and process them sequentially. Since the global fitting

process requires a pixel to fit all the structuring elements to be kept, we can

stop the process as soon as one of the SE is not matched by the HMT. Thus we

perform only an incomplete processing of the set of SE.

Moreover, since within the HMT process the result of the erosion (or dila-

tion) is compared to a fixed threshold, we can avoid the minimum (or maximum)

computation which has to be performed before the threshold comparison. In-

deed, each pixel can be directly compared to the given threshold: as soon as

a pixel does not fulfill the threshold condition, the processing can be stopped

since the SE will not be matched. Using this formulation, one does not need to

determine the minimum or maximum anymore. This optimisation leads to an

incomplete processing of each SE.

The fitting algorithm, based on these optimisations, is provided in Algorithm

1. Let us note that it is even more efficient if the set of SEs is sorted with the

most discriminative SEs first. By this way, the fitting process can stop sooner

with unmatched pixels and global computation time is limited.

4. A practical guide for MHMT-based template matching

The proposed MHMT operator aims to extract features using spatial and

spectral patterns. It can then be used to build template matching process based

on mathematical morphology. In this section, we present how to design such
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Data: Im: Image; SE: Array of SEs

Result: FIm : Fitting image

initialisation;

for i:each pixel of Im do

for j:each structuring element of SE do

if φSE[j] = δ then

for k:each pixel of FSE[j] do

if ImbSE[j]
(i+ k) ≥ tSE[j] then

FIm(i) = false;

GOTO next pixel of Im;

end

end

end

if φSE[j] = ε then

for k:each pixel of FSE[j] do

if ImbSE[j]
(i+ k) < tSE[j] then

FIm(i) = false;

GOTO next pixel of Im;

end

end

end

FIm(i) = true;

end

end

Result= FIm;
Algorithm 1: Improved MHMT fitting

a system and compare it with classical template matching methods. We then

propose several application cases related to the field of remote sensing, before

discussing possible improvements of our method.

4.1. Design morphological template matching for different features

To be successfully applied, morphological template matching required to be

adapted to the specificities of the desired pattern. In this section, we distinguish

two types of patterns (discontinuity and shape) and explain how to design dedi-

cated template-matching systems using the proposed MHMT operator. Indeed,

each feature will require the system to ensure some properties (e.g. robustness
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against orientation or scale), thus impacting the design of the template matching

system.

4.1.1. Discontinuity

Discontinuity is an abstract feature: indeed, it is not considered as a straight

visual feature but rather denotes the limit between two specific areas. Disconti-

nuity extraction is used, for example, by coastline delineation methods. In such

cases, we assume it exists two sets of opposite SEs, each of them defining one

given area. A MMTM method dedicated to particular discontinuity extraction

is built in two steps:

• The two areas have to be defined spectrally and spatially, but the spatial

definition is only related to the depth or width of the feature.

• Apart for the detection of a specific directional discontinuity (e.g. only

vertical discontinuity), there is a need of applying MHMT at different

orientations of the SEs.

SEs origin

area 1 SEs

area 2 SEs

Figure 4: Example of SEs for an oriented discontinuity extraction

We notice that the two sets of SEs do not have to be connected, the proposed

MHMT operator can handle an uncertainty area (similarly to the standard HMT

definition and usage).

4.1.2. Object

Object may be seen as the classical feature of template matching. Specific

object extraction is used to find a specific object in an picture. Here we assume

there are two sets of SEs: one is defining the object (being possibly as small

as a single point) while the other is defining what is not the object (e.g. , the
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background). A MMTM method dedicated to object extraction is built in three

steps:

• The SEs representing the object are defined both in terms of spatial and

spectral information

• The SEs representing what is not the object are defined both in terms of

spatial and spectral information

• Depending of the object (fixed size or not, different orientations or not),

the MHMT can be applied with SEs at different orientations and/or dif-

ferent scales.

SEs origin

object SEs

non-object SEs

uncertainty area

Figure 5: Example of SEs for object extraction

In order to be able to match the object even with discretisation problems

(e.g., stairing effect), we advise letting an uncertainty area between the different

sets of SEs.

4.1.3. Robustness

To be really useful in practice, the template matching operator needs to

ensure a certain level of robustness. Here we discuss the robustness of the

MHMT against orientation, scale, translation and contrast.

The robustness against orientation and scale can be ensured by applying the

template in different orientations with different sizes as it is used in the next

section. This is possible thanks to the hard fitting step, which prevents from

combining different fitting values. Indeed, a template is matched if it fits for

at least one configuration (size, orientation). The computation of the valuation
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is the following: if the template is matched for different orientations/sizes, the

resulting valuation is computed as the highest of the single valuations since it

is expected to represent the best matching of the template. While our operator

is applied on each pixel of the image, it is of course robust to translation. But

the MHMT is not robust to contrast change. Indeed, since the expert set the

threshold values, a change of contrast may lead to a pixel value modification

which will be high enough to break the threshold conditions.

4.2. Setting the SE parameters

The settings of the SE parameters (b, t, φ) is expected to be made by an

expert based on her domain knowledge. In our context (i.e., remote sensing),

the expert knows (at least partially) the spectral signature of the desired object

and of its environment, or of the areas surrounding the desired discontinuity.

This spectral information depends on the type of sensor and eventually external

factors (e.g., season for remote sensing imagery). Obviously, the goal here is not

to use all possible constraints, since it would be computationally expensive. We

rather consider only the most discriminant spectral information of the object

under study when compared to its environment. For instance, if we consider

spectral knowledge given in Table 1, we can observe an important overlap of

spectral signatures of sea and land in bands Green and Red. Thus, the expert

will most probably not use these spectral bands as discriminative information

in the template matching process. Setting parameters w.r.t. bands Blue and

Near-Infrared looks much more relevant since the related information is more

reliable to distinguish between sea and land.

To ease the SE parameter setting step, intuitive and interactive approaches

may be considered. For instance, we consider here the case of drawing scribbles

on objects of interest which is a very common method for interaction [6, 22].

It then allows to learn the spectral range of the desired features and to auto-

matically set the SE parameters in order to achieve the highest discriminative

power of the template matching method. This principle is illustrated in Fig. 6

where the user has drawn markers on two warehouses and on the background:
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Band Sea Land

Blue 173 – 193 134 – 165

Green 215 – 269 147 – 241

Red 119 – 167 66 – 177

Near Infrared 55 – 84 126 – 575

Table 1: Spectral ranges from sea and land obtained from a QuickBird image.

from this user input, the system is able to obtain the spectral range of the

templates defined from the scribbles (Tab. 2). The final step is then performed

either by the user who analyse these spectral ranges to select appropriate bands

and thresholds, or directly by a machine learning algorithm to identify the best

decision functions.

Figure 6: Scribbles drawn on some warehouses and background to learn SE

parameters from a QuickBird Image ( c©Digitalglobe).

4.3. Comparison with classical TM methods

In this section, we compare the MHMT with three classical template match-

ing methods: a purely spectral method, the multi-thresholding approach; a

purely spatial method, the vectorial HMT [2] with flat structuring elements;

and a mixed method, the correlation technique [8].

Figure 7 presents the 24 bits RGB image and the objects it contains which
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Band Warehouses Background

Blue 336 - 556 142 - 323

Green 511 - 857 161 - 476

Red 381 - 635 82 - 344

Near Infrared 362 - 612 93 - 431

Table 2: Spectral range of the scribbles drawn by the user on figure 6.

are crosses, rectangles, circles and squares of different colors. This figure also

shows the desired template, a cross with a color close to the background color

and the shape of the two structuring elements MHMT and VHMT will be using.

a b c d e

Figure 7: a) Original image; b) Image without background; c) Template to

detect (magnified); d) Foreground structuring element shape (magnified); e)

Background structuring element shape (magnified)

Multi-thresholding is applied here with a double thresholding of each original

image band. Values used by the double thresholding are the values surround-

ing template values. Vectorial HMT is applied using the two flat structuring

elements shown in figure 7 and lexicographical ordering. Correlation used the

whole template. MHMT is applied using SEs defined as follows:

Ω =

{Fs1 = Foreground SE, bs1 = RED, ts1 = 80, φs1 = ε}

{Fs2 = Foreground SE, bs2 = GREEN, ts2 = 77, φs2 = ε}

{Fs3 = Background SE, bs3 = BLUE, ts3 = 192, φs3 = ε}
(34)

Visual results of each method presented in figure 8 show that only the corre-

lation and the MHMT have succeeded in detecting the specified cross template.
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Nevertheless, the correlation requires a subsequent thresholding to obtain a

binary decision. Moreover, as shown in table 3, the MHMT achieves a more ef-

ficient processing than the correlation. Let us notice however that we are using

here the standard definition of the correlation operator, without any optimisa-

tion. We have not considered efficient algorithms working in the frequency space

built from FFT since our method only deals with the spatial domain. Neverthe-

less, we could have relied on optimized spatial correlations methods [7] which

would have most probably lead to similar computation time as our method, but

such approach are approximations of correlation and a deep comparison on this

issue was beyond the scope of this paper. Only the multi-thresholding is faster

than the MHMT, but since it ignores spatial information, it extracts a lot of

false positive objects. VHMT gives only one false positive but is the slowest of

the four methods. Computation times are obtained on Core i7 Q720 CPU using

a Java implementation.

a b c d e

Figure 8: a) MHMT after reconstruction; b) Multi-thresholding; c) VHMT with

lexicographical ordering after reconstruction; d) Correlation; e) Correlation after

thresholding and reconstruction

In conclusion, compared to these standard template matching methods, the

MHMT provides relevant results while ensuring a low computation time. These

abilities will be further studied by some real applicative scenarios.

4.4. Applications

To further show the relevance of our new operator, we propose here a couple

of experiments related to the remote sensing domain. Images considered here

are 4-band QuickBird images with a spatial resolution of 2.4 meters per pixel.
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Method Computing Time (sec) False Positive

MHMT + rec. 0.3 0

Correlation + thresh. + rec. 167.0 0

Vectorial + rec. 224.1 1

Multi-thresholding 0.1 6

Table 3: Comparison of the different methods in terms of computing time and

false positives

Spectral bands are related to near infra-red, red, green and blue wavelengths.

Image size is equal to 1780 × 782 pixels in the first experiment (Fig. 10) and

627× 376 pixels in the second experiment (Fig. 13). Let us also note that pixel

values are coded over 11 bits (2,048 possible values), which has no influence on

our method (apart from the values ts).

4.4.1. Border extraction in satellite VHR images

As a first application example in remote sensing, we consider the case of

satellite images with a very high spatial resolution (VHR). Template matching

on such images can focus on some predefined borders, coastline being one of the

most representative examples when dealing with coastal remote sensing.

Here, we are in a context of discontinuity extraction as coastline is typically

defined as the border between sea and land. Its automatic extraction from

digital image processing is a very topical issue in remote sensing imagery [5].

Even if some methods have been proposed for low or medium spatial resolution,

none are relevant on very high spatial resolution (VHR) satellite imagery where

a pixel represents an area lower than 5× 5 m2.

Since a coastline is well defined both with spatial and spectral information,

the proposed MHMT can be seen as a relevant tool to perform its extraction. A

basic assumption would be that only two SEs are necessary to identify the two

parts around the border (i.e. sea and land) as shown by S1 and S2 in Figure

9. However, to be able to distinguish between coastlines and other water-land
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borders (e.g. lake border, river bank, etc), we involve an additionnal SE to

represent deep sea (or at least water further from the coastline) as illustrated

by S3 in Figure 9.

WATER LAND

S1 S2
S3

LAND

S1 S2
S3

Figure 9: Spatial definition of SEs used for coastline extraction with matching

and unmatching conditions

In order to limit the computation time, the shape of each SE can be limited

to a single line segment (either on the sea or the land part of the border).

However with this configuration, it would be only possible to detect coastline for

a single orientation. To ensure rotation-invariant template matching, multiple

orientations of the SEs are necessary. To do so and to be able to consider all

possible coastline orientations, the application of the MHMT is performed in

various directions. The interested reader can find more details in [14].

Relevance of MHMT for the extraction of coastline in VHR imagery can be

observed in Fig. 10. In order to demonstrate the effectiveness of the MHMT-

based approach, we compare it to three classical coastline extraction methods:

Bagli and Soille [3], Heene and Gautama [9] and Jishuang and Chao [10]. We

use two evaluation measures which respectively characterize the accuracy and

the precision of the methods. Accuracy is evaluated through mean distance,

measuring the average distance between the extracted coastline and the refer-

ence coastline (ground truth). It is computed by averaging distances from all

extracted pixels to the closest pixels of the reference. Precision is evaluated by

measuring the number of false positive connected components. Indeed, it penal-

izes methods which may produce a very accurate result (i.e. a coastline equal to

the reference) but also many outliers or irrelevant (coastline) regions. To do so,

we first perform a connected component (CC) labeling and then enumerate all
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(a)

(b)

Figure 10: (a) Coastline extraction on Normandy coast from a QuickBird image

( c©Digitalglobe), extracted coastline in green and reference coastline in blue, (b)

details of the extracted coastline.
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CC which do not overlap the coastline reference. Results of the comparison are

given in Table 4 and show that MHMT-based method is closer to the reference

coastline than other methods and give no false positives, contrary to two of the

compared methods (visual results are shown in figure 11).

Method Mean Distance False Positive

(per pixel) (in terms of CC)

MHMT-based 1.00 0

Bagli and Soille [3] 6.90 35

Heene and Gautama [9] 2.52 30

Jishuang and Chao [10] 2.10 0

Table 4: Error measures produced by the different coastal extraction methods

4.4.2. Petroleum tank extraction in satellite VHR images

The second application deals with object extraction and more precisely

petroleum tank extraction. We consider a study site located in the harbor

of Le Havre in France. Petroleum tanks are cylindric like the other tanks, but

in this harbor, they are white in order to distinguish them from other tanks

(and thus look brighter in the image). So, to solve the problem of petroleum

tank extraction, spatial information (cylindric shape) is not enough, we need

to use the spectral information (petroleum tanks are white). This is the reason

why we use MHMT to extract these objects. MHMT is used with two sets of

SEs, one defining the petroleum tanks, the other defining what is around the

petroleum tanks. Their shapes are shown in figure 12.

Since there is not a unique size for petroleum tanks, MHMT has to be applied

with various SE sizes. The spectral parameters are defined by an expert and

given in equation 35. The spatial parameters are the following: we consider a

circular SE of radius r varying from 2 to 20 pixels, while the surrounding ring
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Bagli and Soille [3]

Heene and Gautama [9]

Jishuang and Chao [10]

Figure 11: Coastline extraction by existing methods (extracted coastline in

green, reference coastline in blue and false positive CC in red).
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SEs origin

petroleum tank SE

background SE

uncertainty area

Figure 12: Spatial definition of SEs used for petroleum tank extraction

SE radius is a little bit larger (i.e. equal to r + 2).

Ω =

{Fs1 = circle bs1 = BLUE, ts1 = 450, φs1 = ε}

{Fs2 = circle bs2 = GREEN, ts2 = 450, φs2 = ε}

{Fs3 = circle bs3 = RED, ts3 = 450, φs3 = ε}

{Fs4 = circle bs4 = NIR, ts4 = 450, φs4 = ε}

{Fs5 = ring bs5 = GREEN, ts5 = 716, φs5 = δ}

(35)

Shape circle represents object set of SEs while ring represents non-object set

of SEs. NIR means Near Infra-Red band. In this example, thresholds have

been easily set by the expert from a manual study of the multispectral image

histogram. Indeed, tanks might be distinguished from the other objects and

the image background based on their spectral signature. We rely here on peak

values in the histogram to set adequate threshold values.

Applying MHMT with these parameters gives promising results as shown in

figure 13. This satellite image contains 33 petroleum tanks, 32 were extracted,

one was missed due to the presence of dark colors on its roof. There is also

one false positive, a piece of a non petroleum tank was extracted as a petroleum

tank but no entire other tank was extracted. MHMT appears here as an efficient

solution to deal with the problem of specific tank extraction. Let us note that

the problem of the missed tank can probably be solved by introducing some

fuzziness in the MHMT operator.

4.5. Discussion

We have previously illustrated the potential of our proposed MHMT by two

applications in remote sensing. To increase the relevance of MHMT in real-life
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Figure 13: Petroleum tank extraction on Le Havre harbor QuickBird

image( c©Digitalglobe). Correct detections are surrounded by white boundary,

false positive are given in red while false negative are given in cyan.

template matching problems, we believe some other improvements might be

brought.

The first one is related to automatically learning the set of structuring ele-

ments. To replace expert knowledge, it might be useful to get the structuring

elements through a machine learning strategy. Indeed, defining the structuring

elements is not always straightforward. While the expert has a precise knowl-

edge of the objects and the problem under study, it is not always easy for her

to state this knowledge as a set of extended structuring elements. By providing

some visual examples, machine learning strategy might be involved to deter-

mine the adequate set of extended SEs. In Sec. 4.2, we propose an intuitive

scheme where the user is invited to draw scribbles on some objects of interest.

From these scribbles, the different SE parameters can be learnt, depending on

the type of desired feature (discontinuity or object), which can itself even be

deduced from shape of the scribbles. In the discontinuity case, spectral param-
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eters may be selected as the most specific spectral ranges between the two sides

of the scribble. In the object case, they are rather determined from the most

discriminant spectral ranges of the scribble pixels compared to their surround-

ing. Shape definition is more complex and definitely requires an in-depth study

(out of the scope of this paper) to exploit state-of-the-art machine learning

methods. It is also possible to perform parameter settings based on the usage

of ontologies. Indeed, if a user has a well-defined ontology or knowledge base

containing the objects of interest, most discriminant SE parameters might be

easily extracted. Let us note that ontology-based solutions are also useful for

automatically defining the spatial parameters (shape, size).

A second way of improvement is related to the hard behavior of the MHMT.

Indeed, the proposed operator contains a fitting step which looks very sensible to

noise due to its binary response. Let us observe however that it is a well-known

drawback of most HMT operators. A HMT robust to noise has been proposed in

Perret et al. [13], using a fuzzy definition of the HMT with standard structuring

functions. This might be transposed to MHMT, in order to construct a fuzzy

MHMT able to deal with noisy multivariate images without any additional cost

regarding the SE definition. Bringing fuzziness to the MHMT would probably

solve the problem encountered in section 4.4.2.

5. Conclusion and perspectives

Among the most common toolboxes for image analysis and processing, math-

ematical morphology offers a solution for the template matching problem with

the operator called hit-or-miss transform (HMT). This operator considers two

structuring elements or spatial templates to be matched within the input image,

one for the foreground and one for the background. Despite a single definition

on binary images, more complex images such as greyscale images have led to

several propositions, in particular from Soille [18] and Ronse [15]. The case of

multivariate images has been addressed only very recently [2], where require-

ments to extend existing greyscale HMT definitions to multivariate images are
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discussed. Such extensions require using a vectorial ordering, but selecting the

adequate vectorial ordering in a given context may be tedious since a wide range

of solutions are available [1]. A marginal strategy may also be involved, but it

would result in the independent processing of all spectral bands, which is a

major drawback when template matching relies on both spatial and spectral

information.

So we address in this paper the problem of morphological template match-

ing within multivariate images and introduce a new multivariate hit-or-miss

transform. This operator does not need to define a vectorial ordering, but is

still able to catch spectral information in the sought template. Moreover, its

behavior can be easily understood, thus resulting in an intuitive way of param-

eter settings (i.e. template definition) and efficient implementations. Equipped

with this operator, we discuss several template matching scenarios, considering

discontinuity- or object-like templates. We finally demonstrated the relevance

of our proposition by several template matching applications cases from the

remote sensing field.

Further works will include a study of the operator’s robustness against noise,

which can be improved by using fuzzy structuring elements. Moreover, we

also plan to facilitate the process of template designing by introducing a way

to interactively learn the structuring elements to be involved in the template

matching process.
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