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Efficient satellite image time series analysis under
time warping

François Petitjean†, Member, IEEE , Jonathan Weber‡

Abstract—Earth observation satellites are now pro-
viding images with short revisit cycle and high spatial
resolution. The amount of produced data requires new
methods that will give a sound temporal analysis, while
being computationally efficient.
Dynamic Time Warping has proved to be a very

sound measure to capture similarities in radiometric
evolutions. In this letter, we show that its non-linear
distortion behavior is compatible with the use of a
spatio-temporal segmentation of the data cube that
is formed by a satellite image time series (SITS).
While dealing with spatial and temporal dimensions of
SITS at the same time had already proven to be very
challenging, this article proves that taking advantage
of the spatial and temporal connectivities, both the
performance and the quality of the analysis can be
improved.
Our method is assessed on a SITS of 46 Formosat-

2 images sensed in 2006, with an average cloud-cover
of one third. We show that our approach induces 1) a
sharply reduced memory usage, 2) improved classifica-
tion results and 3) shorter running time.

Index Terms—Satellite Image Time Series, Dynamic
Time Warping, spatio-temporal segmentation.

I. Introduction

STARTING in 2014, the ESA’s Sentinel program will
provide satellite image time series (SITS, for short)

with high temporal and spatial resolutions. This program
includes five missions – Sentinel-1 to Sentinel-5 –
that will support the monitoring of lands, oceans and
atmosphere. These missions fulfill revisit and coverage
requirements to support the general GMES program.
Sentinel-2 will for example provide a general optical
cover of the Earth’s surface every five days with 10 m to
60 m resolution and 13 spectral bands.

This data is obviously very valuable for Earth mon-
itoring: ecosystems modeling, water cycles monitoring,
agriculture control, etc. The natural counterpart of the
value of this data is its complexity. Considering the coarser
spatial resolution of Sentinel-2, i.e., 60 m, and only
considering the emerged part of Earth, dozens of billions of
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pixels will be acquired every five days. Tackling this huge
amount of data is extremely challenging, especially given
its temporal nature.

Understanding evolutions that take place in SITS re-
quires to consider the evolution of every (x, y) area with
time. Analyzing and classifying this type of data relies on
the ability to understand the similarities and differences
between these evolution profiles. Dynamic Time Warping
(DTW) has proved to be a sound tool for the analysis
of SITS [1], [2]. DTW makes it possible to consistently
compare radiometric series with different lengths and sam-
pling, which is a decisive property for the operational anal-
ysis of large-scale SITS. In particular, it makes it possible
to deal with cloud-covered pixels without interpolating the
missing values and/or removing cloudy images.

This letter addresses the computational issues of SITS
analysis, in order to support the analysis of the data that
will be produced by upcoming satellites.

We start by reducing the vocabulary over which the
SITS is described. To this end, we apply a spatio-temporal
segmentation to simplify the series of image. The SITS is
then made of spatio-temporal regions. SITS classification
aims deciding on the class of every (x, y) area, in terms of
its evolution over the image series. However, the spatio-
temporal segmentation induces that every (x, y) area is
described by a series of spatio-temporal regions. This
greatly complicates the comparison of the evolution of
different areas observed over the SITS. To solve this issue,
we take advantage of DTW’s ability to optimally “unpack”
these series.

Our experiments show that the proposed method
achieves three main results. (1) We reduce the memory
requirements by more than a factor five. (2) As a result
of the filtering that is induced by the segmentation, the
quality of the temporal classification is improved. (3) Deal-
ing with shorter series of values for every (x, y) area, the
execution time of the DTW-based classification (including
the segmentation step) is reduced.

The method is presented in Section II. Experiments
carried out on a series of 46 Formosat-2 images are
presented in Section III. Section IV concludes this letter
and presents some future work.

II. Temporal classification of
spatio-temporally segmented satellite image

time series
The aim of our approach is to reduce the computational

requirements of SITS analysis, while maintaining its qual-
ity. Our approach combines 1) simplifying the SITS with
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a segmentation algorithm and 2) using Dynamic Time
Warping to “unpack” the series of spatio-temporal regions,
in order to make this simplified data analyzable.

1) Simplifying the SITS: We first reduce the vo-
cabulary over which the data is described, in order to
sharply reduce the memory consumption for the analy-
sis. To this end, we use a spatio-temporal segmentation,
namely spatio-temporal quasi-flat zones [3]. We chose this
segmentation method because it only slightly reduces the
informativity of images, and because it is dedicated to
spatio-temporal data. We can then map every pixel of
the SITS to the spatio-temporal region it belongs to. This
allows us to sharply reduce the amount of memory that is
required for the analysis.

2) Comparing series of spatio-temporal regions:
The spatio-temporal segmentation is very interesting from
the computational perspective, because it makes the most
of the redundancy of the data. Dealing with spatio-
temporal regions for SITS analysis is however very chal-
lenging. Two different (x, y) areas may belong to the same
regions at time t1, not anymore at t2, but again at t3.
Even more challenging, the region R1 they belong to at
t1 can be the same as the one they belong to at t3. The
length and sampling of two series can moreover be very
different. This leads us to the second idea of this letter.
We look at the series of spatio-temporal regions in which
every geographic area (x, y) successively belongs to. We
take advantage of DTW’s ability to optimally “unpack”
and assess the similarity of these series.

A. Input
The method takes as input a series

Simage = 〈I1, . . . , IN 〉 of N ortho-rectified W × H
images. Let E = [[1,W ]]× [[1, H]] and B be the number of
spectral bands for each image. Each multivalued image
In (n ∈ [[1, N ]]) describes function:

In : E → ZB
(x, y) 7→ In

1 (x, y) , · · · , In
B(x, y) (1)

B. Segmentation of the SITS
A spatio-temporal segmentation of the SITS Simage is

a partition S = {Ri}Ri=1 of [[1, N ]]×E. Broadly speaking,
the cube that is formed by Simage is “decomposed” into R
distinct regions Ri. We associate to every original image
In of Simage a region image In

R:
In

R : E → [[1,R]]
(x, y) 7→ In

R(x, y) (2)

Note that the R regions are spatio-temporal; as a conse-
quence, they are shared among all the N In

R images. In
addition, for every spatio-temporal region R, we compute
and store the B average radiometric level. The correspond-
ing map is defined by:

A : [[1,R]] → ZB
R 7→ A(R) (3)

In this step, any spatio-temporal segmentation algo-
rithm can be used. For remote sensing, the segmentation

step has two main aims. First, it aims at constructing
objects of interest for high resolution images, in order
to perform an object-based image analysis. Second, it
reduces the amount of data to analyze by focusing the
analysis on regions. In our case, the use of segmentation is
slightly different. The classification will still be performed
for every (x, y) area and not for every spatio-temporal
region. Our objective is actually to reduce the vocabulary
of description of the data.

We thus advise to use a conservative segmentation
method that will construct radiometrically homogeneous
spatio-temporal regions, while keeping the informativ-
ity of the data. We propose to use (ω)-quasi-flat zones
(also named (ω)-constrained connectivity) based segmen-
tation [4]. Quasi-flat zones have been successfully extended
to spatio-temporal data [3]. Quasi-flat zones algorithms
require to set one parameter ω that sets the maximum
difference between two pixels of the same region. Exper-
iments will study the influence of this parameter on the
results.

C. Classification of the time series

Let S be the dataset built from the segmented Simage.
For every (x, y) area, S contains the sequence of regions
Ri that the area (x, y) goes through over time. Note that
the number of regions can be different from one (x, y) area
to another.

The classification of the sensed area over time corre-
sponds to a label image IC that maps each sensed area
(x, y) to a class index IC(x, y) among the C possible ones:

IC : E → [[1, C]]
(x, y) 7→ IC(x, y) (4)

To build such a classification map from a SITS, the
(x, y) areas have to be classified in terms of their evolution
over time. In the heart of almost any analysis process,
there is a tool capturing similarities in data. In our case,
every (x, y) area is described by a series of regions and
their average radiometric values. “How similar have these
two areas evolved?” is the question to which the analysis
process often has to answer to. Disposing of a similarity
measure makes it possible to answer to this question.
Different similarity measures can be of different relevance.
Dynamic Time Warping (DTW) [5] has proved to be a
sound similarity measure for radiometric series [1], [2]. The
founding idea was to define a measure that would be able
to capture local distortions on the time axis. Simplifying
its concept, DTW can be seen as a two steps process
that (1) finds the optimal way to align the two compared
series and (2) returns how different these aligned series are.
DTW can deal with series that are irregularly sampled,
because its alignment is optimal. Note that this implies
that DTW can compare series of different lengths as well.

DTW warps one sequence into the other so that the
total cost of the transformation is optimal. The cost of the
optimal alignment of two sequences A and B respectively
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Fig. 1. Two slightly shifted series aligned with DTW. On the left:
matrix in which DTW is computed. The warping path is depicted in
green. On the right: resulting alignment of the series.

aligned up to the ith element of A and jth is:

DTW(Ai, Bj) = d(ai, bj)+min

 DTW( Ai−1 , Bj−1 ),
DTW( Ai , Bj−1 ),
DTW( Ai−1 , Bj )

where Ai is the sub-sequence 〈a1, . . . , ai〉. For two se-
quences of respective lengths |A| and |B|, the overall
similarity is then given by DTW(A|A|, B|B|).
In our case, as the (x, y) areas are described by se-

quences of regions, the elements ai and bj are regions. To
use DTW, we have to be able to compare ai with bj . To
this end, we define d as Euclidean distance (δ) between
the corresponding average intensities of the regions:

d(Ri, Rj) = δ (A(Ri), A(Rj)) (5)
In practice, all the regions are numbered between 0 and
R − 1 and their multi-spectral average values are stored
in a R × B matrix. This makes it possible to access the
values in Θ(1) and thus to keep the same computational
complexity.

DTW makes use of dynamic programming to find the
optimal alignment in polynomial time [5]. Optimal so-
lution to sub-problems are stored in a matrix, and the
optimal alignment is given by the warping path, i.e., the
path of minimal cost in the matrix. This process is briefly
illustrated in Figure 1.

III. Experiments

A. Material and method
The area of study for this work is located near the town

of Toulouse in the South West of France. 46 Formosat-2
images sensed over one cultural years is used. The tempo-
ral distribution of this SITS as well as its cloud covering
is given in Figure 2. We use the multi-spectral product
at a spatial resolution of 8 m and keep the three bands
Near-Infrared, Red and Green.

A number of corrections are applied on the Formosat-
2 products before being used in the analysis process.
Firstly, images are orthorectified to guarantee that a pixel
(x, y) covers the same geographic area throughout the
SITS. Secondly, every image is radiometrically corrected
from the effects of the sensing conditions, in order to
make the pixel values comparable from one image to
another. Digital counts are first converted into reflectances
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Fig. 2. Temporal distribution and cloud covering of the images from
the studied SITS. Each spot represents an acquired image.

(normalized physical quantity of solar irradiance) by us-
ing the instrument radiometric model. The monitoring
of the Formosat-2 sensor, conducted by the French
Space Agency, provides the absolute calibration coeffi-
cients. Comparing the measured reflectance in simulations
at the top of the atmosphere – carried out for atmospheric
and geometric conditions of measurement – makes it pos-
sible to process the inversion of the surface reflectance.
Simulations carried out for various altitudes – including a
weighting of the atmospheric pressure and the amounts of
aerosols and water vapor – allows us to take the elevation
into account. The condition of the atmosphere at the
sensing time is characterized using meteorological sources
(NCEP for the pressure and the humidity), using ozone
data sources (TOMS or TOAST) and using aerosol data
(SeaWiFS, Aeronet). Otherwise, climatological values
are used.

Figure 3(b) depicts the reference land-cover map that is
associated to this dataset [6]. Cloud-contaminated pixels
are screened automatically [7] and removed from the initial
SITS.

Our experiments aim at studying the influence of the
spatio-temporal segmentation step on the classification.
Our objective is to demonstrate the interest of our ap-
proach in general, and not to highlight the best result
only. We want to show that our results are consistent,
not only for a particular set of parameters, but for their
own sake. We will show how the segmentation param-
eter (ω) influence the classification in terms of (1) the
memory footprint, (2) the quality of the classification and
(3) the execution time of the global process (segmenta-
tion+classification).

Classification problems are usually addressed using su-
pervised or unsupervised algorithms. Supervised classifi-
cation algorithms require training examples to learn the
classification model. In our case, we want to study the
relevance of the proposed data representation. The choice
and the suitability of the examples would create a bias,
which would make difficult to assess our method. Unsuper-
vised classification allows us to highlight the consistency
of the proposed approach, without being influenced by
several issues linked to the evaluation of supervised ap-
proaches (choice of the algorithm, cross-validation, build-
ing and sampling of the training set). We use the standard
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K-means algorithm and then automatically label every
cluster with regard to the most similar class [1].

In this article, the data objects are time series describing
the evolution of the (x, y) geographic areas. To use the
K-means algorithm to classify this type of data, it is
necessary to provide a way to evaluate the similarity
between these time series, as well as a way to construct an
average time series from a set of time series. We use DTW
to measure how the two optimally aligned series differ from
each other (Section II-C). We use DBA [2] to compute an
average time series from a set of time series.

We report the memory footprint and execution time of
the proposed approach, as well as the quality of the clas-
sification. The latter is assessed with the overall accuracy
(OA) and with the F-measure. The overall accuracy gives
the percentage correctly classified (x, y) areas over the
total number of (x, y) areas. The F-measure corresponds
to the harmonic mean between precision (P) and recall
(R): F = 2 · P·R

P+R .

B. Results
We present quantitative and qualitative results. The

quantitative results are presented in Table I, and compared
to the “reference” pixel-based SITS classification (first line
of the table).

First, it can be noticed that for almost all parameters
from 50 to 180, the quality of the classification improved.
We also sharply reduced the memory consumption and
optimized the running time. For all cases, we reduce the
memory footprint by at least a factor five.

The increased quality of the classification is due to the
segmentation step tends to smooth out the radiometric
heterogeneity and helps capturing spatial similarities. We
obtain the best result in terms of quality for ω = 100. The
F-measure and the overall accuracy are both increased by
two points, while the memory footprint is decreased by
more than a factor seven.

Even if we use low values for ω (e.g., 50 or 60) – which
produces an over-segmentation of the SITS – the memory
consumption is sharply reduced. This is due to the re-
duced vocabulary for the description of the data, which is
induced by the spatio-temporal segmentation. At the same
time, the quality of the classification is improved compared
to the results obtained by the standard DTW method.
This is a result of the segmentation step which ensures the
spatial consistency of the results. The computation time
(segmentation + classification) is also reduced by about
20 % for all the parameters of the segmentation.

To qualitatively assess our results, we propose to depict
in Figure 3(a) the classification results for the smallest
ω. This parameter leads to an over-segmentation of the
image series and thus do not make the most of the spatial
consistency. What we want to highlight is that, even if no
information is available about how to set the segmentation
parameters, the classification can be obtained with less
computing resources and with very good quality.

We can remark that the classification map is spatially
regular, which gives a first positive quality assessment of

ω F OA Memory Run-time
% % consumption (%) in hh:mm

#reference 77.5 77.0 100 1:41
50 78.8 79.0 18.7 1:26
60 79.1 78.9 16.9 1:24
70 78.0 77.4 15.4 1:23
80 77.9 78.0 14.4 1:22
90 79.0 79.0 13.6 1:21
100 79.4 79.4 12.9 1:21
110 78.0 78.2 12.5 1:21
120 79.3 79.6 12.1 1:21
130 78.8 79.3 11.7 1:21
140 78.4 78.8 11.5 1:21
150 78.2 78.8 11.3 1:20
160 78.2 77.9 11.2 1:20
170 78.1 78.4 11.1 1:20
180 77.7 77.1 11.1 1:20
190 77.3 76.4 11.1 1:20
200 76.7 76.0 11.1 1:21

TABLE I
Influence of the segmentation parameter on the

performance and quality of the results. The #reference
results correspond to the pixel-based results, without the

segmentation step. Note that the run-times include
segmentation and classification.

the results. The classification map globally separates the
different classes very well. This is the case for corn crop
class in orange, for the wheat crop class in yellow or for
the hardwood class in dark green. If we compare these
results to the ones obtained by the reference pixel-based,
we observe a significant improvement F-measure for these
different classes: +5 % for corn, +3 % for wheat and +9 %
for hardwood.

The grassland class (light green) and the fallow land
class (gray) have however been mixed up for a few fields,
mainly because they have a very close radiometrical evo-
lution over time (fallow lands often present new growth
of grass). Note however that this is also the case in the
results for the reference pixel-based approach.

Similarly, the sunflower class (purple) is not completely
well separated from the soybean class, because the sun-
flower temporal behavior is very variable. Sunflower crops
can actually grow between the end of the summer crop
season and the start of the winter crop season. This makes
it a difficult class to separate from the other temporal
ones. Note that the F-measure is improved by 14 % for
the sunflower class and by 31 % for the soybean class,
when compared to the results of the reference pixel-based
approach.

IV. Conclusion
In this letter, we showed that combining Dynamic Time

Warping with a conservative spatio-temporal segmenta-
tion achieves three main objectives. First, the segmen-
tation of the data makes it possible to take advantage
of the spatio-temporal redundancy, in order to improve
the quality of the classification. Second, the reduction
of the vocabulary allows us to index the values of the
spatio-temporal regions, and thus to sharply reduce the
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(a) (b)

Fig. 3. (a) Classification map obtained with ω = 50. (b) Land-cover reference map.

memory consumption of the analysis. Third, DTW makes
the most of the temporal dimension of regions created
by the segmentation step, and performs in a noteworthy
reduced computation time.

We believe this work opens up a number of research
directions. Some work could be carried out in order to
improve the segmentation step. Quasi-flat zones tend to
generate small regions in transition regions [8]. Filtering
techniques as in [9] should be studied for SITS analy-
sis to reduce this phenomenon. Moreover, not only the
quality of the regions could be improved, but also the
information that is extracted from them. The use of
spatial characteristics for SITS analysis has recently been
introduced [10], [11]. To the best of our knowledge, spatio-
temporal features haven’t been studied for remote sensing
images, and thus raises an important area of investigation.

More generally, the temporal dimension raises numerous
issues for remote sensing images analysis. Time induces
a sequencing in the description of every (x, y) area, and
can thus not be tackled as any other dimension of the
data. In addition, observations are not continuous over
time: there is indeed no information about the (x, y) areas
between two images of the series. We believe that studies
addressing the impact of time-related assumptions on the
quality of SITS results, would greatly benefit the remote
sensing community.
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