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Abstract. Quasi-flat zones enable the computation of homogeneous image re-
gions with respect to one or more arbitrary criteria, such as pixel intensity. They
are most often employed in simplification and segmentation, while multiple strate-
gies exist for their application to color data as well. In this paper we explore a
vector ordering based alternative method for computing color quasi-flat zones,
which enables the use of vectorial α and ω parameters. The interest of this vec-
torial strategy w.r.t marginal quasi-flat zones is illustrated both qualitatively and
quantitatively by means of color simplification and segmentation experiments.
Keywords: Quasi-flat zones; Image partition; Image simplification; Color mor-
phology; Vector orderings.

1 Introduction

For some time now quasi-flat zones [8], i.e. homogeneous image regions with respect
to one or more arbitrary criteria, such as pixel intensity, have been enjoying the interest
of the morphological image analysis community. Given their strong application poten-
tial, in terms of image simplification and segmentation, several definitions have been
elaborated in the past with varying degrees of flexibility and efficiency, e.g. [1, 4, 11,
14, 15]; out of which the (α, ω)-zones [11] stand particularly out, due to their practical
properties.

Although most of them focus on grayscale data, color extensions have been also
elaborated, relying either on the marginal processing of each color channel [11], or on
customized inter-pixel metrics, that take into account color specific information [15].
Inspired by the work on vectorial color mathematical morphology and the application
specific advantages of vector strategies [2], we have decided to take a different direction
in this context. More precisely, we focus on the (α, ω)-zones and investigate a vector-
ordering based approach for them, of which the main interest w.r.t marginal quasi-flat
zones, lies in a) being able to specify channel-specific local and global variation criteria
and b) being able to access a much finer range of local variation criteria, while search-
ing for the one satisfying the global criterion. The practical interest of the proposed
approach is illustrated both qualitatively and quantitatively through simplification and
segmentation tests respectively.



The rest of the paper is organized as follows. Section 2 provides the necessary theo-
retical background. We then proceed to Section 3, where we elaborate on the proposed
vectorial extension to quasi-flat zones. The experiments focusing on the simplification
and segmentation of color images are presented in Section 4, while Section 5 is dedi-
cated to concluding remarks.

2 Background

2.1 Definitions

The notations presented in this section have been introduced in [9] and [10]. Let f :
E → T be a digital image, where E is its definition domain, the discrete coordinate
grid (usually N2 for a 2-D image), P(E) the set of all subsets of E and T the set of
possible image values. In the case of a grayscale image, T can be defined on R, but it is
often defined rather on a subset of Z, most commonly [0, 255]. In case of multivariate
images such as color or multispectral, T is defined on Rn or Zn, where n > 1 denotes
the number of image channels. We denote f(p) the intensity of pixel p in grayscale
images and f b(p) the intensity in the band b of pixel p in multivariate images.

Definition 1 A partition P of E is a mapping p→ P (p) from E into P(E) such that:

1. ∀p ∈ E, p ∈ P (p);
2. ∀p, q ∈ E, P (p) = P (q) or P (p) ∩ P (q) = ∅.

The above term P (p) indicates the part of P which contains the pixel p. We note that:⋃
p∈E

P (p) = E (2.1)

The partition of an image can be obtained through different methods. Here we consider
Quasi-Flat Zones which rely on the concept of connectivity. We define a connection as
the family of all the sets of a space that are connected according to some connectivity
criterion.

Definition 2 A connection C is any family in P(E) such that:

1. ∅ ∈ C;
2. ∀p ∈ E, {p} ∈ C;
3. for each family {Ci, i ∈ L} ⊆ C,

⋂
i∈L Ci 6= ∅,

⋃
i∈L Ci ∈ C, where L is an index

set.

Partitioning an image using a connection C is achieved through a search of the con-
nected components which are of maximal extent according to the connection C. A con-
nected component C ⊆ E is of maximal extent if there is no other set C ′ ⊃ C such
that C ′ ⊆ E and C ′ ∈ C.

In practice, identifying connected components of maximal extent requires to define
a dissimilarity measure between two pixels. Let us assume that each pixel q ∈ E can be



described by some attribute writtenA(q) (e.g. its intensity) and consider a given r-norm
‖ · ‖r. A dissimilarity can then be measured between a couple of pixels following:

q, q′ ∈ E, d(q, q′) = ‖A(q)−A(q′)‖r (2.2)

Two adjacent pixels p and q will then belong to the same connected component C if
d(p, q) < S, S being a dissimilarity threshold. If they are not adjacent, the dissimilarity
is measured along a path linking them. A path π(p q) of length Nπ between any two
elements p, q ∈ E is a chain (noted as 〈. . .〉) of pairwise adjacent pixels:

π(p q) ≡ 〈p = p1, p2, . . . , pNπ−1, pNπ = q〉, (2.3)

Definition 3 Let Π 6= ∅ be the set of all possible paths between a pair of pixels p and
q. The minimum dissimilarity metric with respect to some pre-specified pixel attribute,
is the ultrametric functional given by:

d̂(p, q) =
∧
π∈Π

 ∨
i∈[1,...,Nπ−1]

{
d(pi, pi+1)

∣∣ 〈pi, pi+1〉 subchain ofπ(p q)
}

(2.4)

In other words, the dissimilarity measured between two pixels p to q is the low-
est cost of a path from p to q, with the cost of a path being defined as the maximal
dissimilarity between pairwise adjacent pixels along the path.

2.2 Quasi-flat zones

Since several quasi-flat zone definitions have been proposed in the literature, we con-
sider here only the two main definitions, namely the α-zones Cα and the (α, ω)-zones
Cα,ω . The interested reader is referred to Ref. [11] for more details. Quasi-flat zones
are defined by extension of flat zones (generally called connected components), which
are defined as:

C(p) = {p} ∪ {q|d̂(p, q) = 0} (2.5)

The flat zones cluster connected sets of adjacent pixels with same attribute values (gen-
erally the intensity). This very restrictive definition leads to very small sets of pixels
when dealing with natural images. So, a local range parameter (α) has been introduced
to tolerate a dissimilarity between adjacent pixels in order to obtain wider connected
components, thus leading to the definition of α-zones:

Cα(p) = {p} ∪ {q|d̂(p, q) ≤ α} (2.6)

The Cα of a pixel p is then the set of pixels to which p is linked through at least one
path where the dissimilarity between adjacent pixels is less or equal to α. Note that
flat zones are a particular case of Cα where α = 0. Let us observe that segmenting an
image into Cα with α > 0 may result in an undersegmentation phenomenon. Even with
small α values, it may lead to the so-called “chaining effect” (see [11]).



In order to counter this problem, several new quasi-flat zone definitions based on
Cα have been elaborated. We focus here on Cα,ω [11] which relies on a global range ω
and the following hierarchical property of Cα:

∀α′ ≤ α,Cα
′
(p) ⊆ Cα(p) (2.7)

It leads to the following definition of Cα,ω:

Cα,ω(p) = max{Cα
′
(p) | α′ ≤ α and R(Cα

′
(p)) ≤ ω} (2.8)

where R(Cα) is the maximal difference between the attributes of two pixels of Cα. So,
the Cα,ω of a pixel p is the widest Cα

′
(i.e. built with the highest α′ ≤ α thanks to

property 2.7) where the maximal inter-pixel difference is less than or equal to ω.

3 Color quasi-flat zones

The extension of quasi-flat zones to multivariate and more specifically to color images
although not straightforward is not as difficult as color mathematical morphology [2].
Multiple approaches have been elaborated in the past, with various advantages and dis-
advantages, that we are going to recall shortly in this section, before presenting our
method.

3.1 Related work

Having limited our scope to α- and (α, ω)-zones, the approaches that have been con-
ceived so far for their extension to color images, fall into two major categories denoted
as marginal and vectorial [2]. Given a color image, its marginal quasi-flat zone pro-
cessing, leads to channel-wise computations where each dimension of color pixels is
handled independently. In practice this is equivalent to computing the partition of each
of the three dimensions separately, which most often will lead to three incoherent par-
titions that will need to be subsequently merged w.r.t. some arbitrary criterion.

For instance the color extension of Cα proposed by Angulo and Serra [1] is based
on a polar color space, where colors are represented in terms of hue, saturation and
luminance, thus providing an effective distinction of chromatic (i.e. hue and saturation)
from achromatic information (i.e. luminance). The challenge in this context consists
in combining these two types of information, by employing hue only for “sufficiently”
saturated colors, since it is undefined for zero saturation. Thus, the merging step of
marginal quasi-flat zones lends itself perfectly well for this task, since by computing
the zones on luminance and hue channels only, all that remains is to realize the merg-
ing of the resulting two partitions, by employing the original image’s saturation levels.
Specifically they have thresholded the saturation, hence obtaining a binary saturation
map, denoting the areas of high saturation where hue based quasi-flat zones are to be
used, and areas of low saturation where luminance based quasi-flat zones are preferred.

Another partition merging method has been presented by Weber [12], who employs
a voting mechanism, adaptable to both Cα and Cα,ω . Specifically, given n marginally
computed partitions, two pixels are then considered in the same quasi-flat zone, if and



only if they belong to the same quasi-flat zone in at least ι channels out of n. The ι
parameter in this case constitutes a way of controlling the level of oversegmentation.

Soille [11] on the other hand, has chosen to conduct the merging procedure im-
plicitly during the quasi-flat zone computation stage. More precisely, the color pixel
attribute difference is once again calculated channel-wise, using marginal vector differ-
ences. This way, the difference of two color pixels (or attributes thereof) is considered
as less or greater thanα ∈ Rn, if and only if the same is valid across all image channels:

∀i ∈ [1, n], ∀p, q ∈ E, |f i(p)− f i(q)| ≤ αi ⇔ d(p, q) ≤ α (3.1)

The same principle can be employed when dealing with Cα,ω in order to carry out the
additional comparisonR(Cα(p)) ≤ ω. In other words, a color pixel attribute difference
is considered less or equal than a vectorial ω ∈ Rn, if and only if its marginal com-
ponents are each and every one less or equal than the respective marginal components
of ω. However, establishing the multivariate version of Cα,ω , requires additionally a
vector comparison scheme for conducting the comparison α′ ≤ α of Eq. (2.8). And at
this point, the lack of totality renders marginal ordering insufficient for this task, since
there can be vectors that are incomparable.

To overcome this, Soille [11] has suggested the use of only α = α1 vectors, thus
artificially inducing a total ordering among the α values: [0, 0, 0]T ≤ [1, 1, 1]T ≤ . . ..
Consequently, this way one effectively filters out all α vectors that are marginally in-
comparable, thus obtaining a valid multivariate Cα,ω definition, denoted as Cα,ωSoille,
albeit with a limited value domain for α.

Leaving marginal approaches aside, the vectorial strategy manipulates each color
pixel as a whole, thus taking into account inter-channel relations and fully avoiding
the merging step. This approach has been adopted notably by Zanoguera [15], who
computes color pixel attribute differences by means of various norms in different color
spaces such as RGB, CIELAB, YUV and HSV, thus employing the scalar order when-
ever a comparison is required between the scalar α and ω and the also scalar color pixel
attribute differences. This approach provides a means of controlling the contribution
of each channel into the overall quasi-flat zone computation, by means of the distance
measure under consideration.

However, her definition becomes quite impractical when dealing with Cα,ω . To ex-
plain, in order to implement the global variation criterion ω, according to the definition
of Eq. (2.8) one needs to be able to compare it against the maximal vector pixel at-
tribute difference R(Cα). Although these attribute vector differences can be of course
computed through the chosen color distance measure, determining their maximal value
on the other hand, constitutes a serious efficiency issue, since the attribute distances of
all possible vector pixel couples are required for every pixel added to a quasi-flat zone;
hence leading to an eventually prohibitive computational cost.

3.2 A purely vectorial approach

To address the problem brought by the definition of quasi-flat zones on color images,
existing approaches either proceed with a marginal approach ignoring inter-channel
correlation and demanding a merging of partitions, or consist of a vectorial approach



using color distances that still however employ scalar α and ω values. Consequently,
if one decides to use channel specific arguments, then an alternative strategy becomes
necessary, where both arguments α and ω are vectorial. Before we proceed into the
details of this approach, let us elaborate on our motivation.

Although using a different α and/or ω value per channel provides clearly a higher
level of customization, which is at this point unclear how to determine optimally, in
our opinion the main advantage of using vectorial arguments, is that it provides a finer
search space for Cα,ω when trying to determine the greatest α vector satisfying the
global variation criterion ω, thus potentially leading to zones of higher quality. This
claim will be put to test in the following section.

In order to be able to use arbitrary and vectorial α along with Cα there is one
fundamental issue to resolve, and that is the modification of the pixel attribute difference
d of Eq. (2.2) into d�, so as to render it capable of producing a result comparable
w.r.t. an arbitrary ordering� againstα. To explain, d has to now accommodate vectorial
pixels. And their resulting dissimilarity needs to be computed in such a way that it will
become possible to compare it against an also vectorial α using the ordering �.

This can be resolved in at least two ways, depending whether the pixel attribute
difference output is scalar or vectorial. If scalar, we can use the same tactic as Soille
[11]; to explain, after mapping a given couple of pixels p and q into an arbitrary scalar
attribute difference d(p, q) ∈ R, we can conduct the local variation criterion control
against α as: d(p, q) · 1 � α.

Alternatively, if we desire the pixel attribute difference to remain vectorial, we can
resort to comparing the ranks of the vectors under consideration w.r.t. the ordering under
consideration. Given an arbitrary vector ordering � imposed on a multi-dimensional
space T , we denote by rank� : T → N the function associating each vector with its
position in that space w.r.t. �. The smallest vector in T w.r.t. � will have a rank 0, the
next a rank of one, etc. In particular, all the vectors present in the multivariate set of
pixel values are projected onto a space-filling curve, a curve passing from all the points
of the multi-dimensional discrete space, where each vector has its own unique rank. Of
course this requires a total ordering. Hence the attribute difference of vector pixels to
be compared against α using a custom � ordering becomes:

∀p, q ∈ E, d�(p, q) = |rank�(f(p))− rank�(f(q))| (3.2)

Consequently the new definition of Cα becomes:

Cα�(p) = {p} ∪ {q | d̂�(p, q) ≤ rank�(α)} (3.3)

where

d̂(p, q) =
∧
π∈∏

 ∨
i∈[0,...,Nπ−1]

{d�(pi, pi+1)|〈pi, pi+1〉 subchain ofπ(p q)}


(3.4)

The adaptation of Cα,ω to vectorial α and ω is identical. Expression R�(Cα(p)) now
computes the greatest rank difference w.r.t. � among all the vectorial pixels present
withinCα(p), and the resulting rank is compared against that ofω in order to determine
if the quasi-flat zone violates or not the global variation criterion.



Moreover, each time a pixel p of a quasi-flat zone Cα is tested against the global
criterion ω and the test fails, one needs to fall back to the immediately next smaller
α′ � α. Yet, this cannot happen unless the set of α vectors is totally ordered. In
conclusion, the multivariate version of Cα,ω based on vectorial arguments, requires a
total ordering to be imposed on the set of α vectors:

Cα,ω� (p) = max{Cα
′

� (p) | α′ � α and R�(Cα
′
(p)) ≤ rank�(ω)} (3.5)

which can be considered as the cost of the flexibility for employing channel specific
global and local variation criteria.

In conclusion, total vector orderings effectively enable the computation of color
quasi-flat zones using vector parameters. Although this equips the tool under consid-
eration with great potential in terms of customization (e.g. inter-channel relation mod-
eling, channel-specific parameters, etc.), without sacrificing theoretical validity, it also
increases the burden of configuration, as setting these arguments optimally constitutes
undoubtedly a challenge.

4 Experiments

In this section, we present the results of simplification and segmentation experiments
that have been conducted in order to compare the performance of the proposed vectorial
color quasi-flat zone extension against the marginal strategy. For the sake of simplicity,
we consider the RGB color space. The main challenge of providing a total order for
the set of α vectors may be resolved by means of the Euclidean norm. However, a
pitfall with norm based orderings, is their lack of anti-symmetry, which leads to pre-
orderings. A way around this problem can be to supplement the Euclidean norm with a
lexicographical comparison (≤L) [3], as follows:

∀ v, v′ ∈ R3, v �rgb v′ ⇔ [‖v‖, v1, v2, v3]T ≤L [‖v′‖, v′1, v′2, v′3]T (4.1)

thus rendering �rgb a total ordering, and enabling the computation of the widest quasi-
flat zone required for defining Cα,ω�rgb , while using d�rgb . This ordering can be of course
used equally well during the calculation of the minimal dissimilarity metric, as well as
for the comparison against the global variation criterion ω, thus effectively leading to a
multivariate solution specifically adapted for the RGB color space.

4.1 Simplification

In terms of qualitative comparison we have conducted a series of image simplification
tests employing images from the Berkeley Segmentation Dataset (BSD) [7]. In partic-
ular, we compare the proposed vectorial approach against Cα,ωSoille, using five images of
the said dataset. Image simplification is realized by producing quasi-flat zones on the
images, while each quasi-flat zone is represented by the mean value of its pixels. As to
the α and ω parameters of both tools, they are distinct and have been arranged so as to
obtain similar numbers of quasi-flat zones. The initial results are shown in Fig. 1.



(a) (b) 24461 quasi-flat zones (c) 25846 quasi-flat zones

(d) (e) 22592 quasi-flat zones (f) 21576 quasi-flat zones

(g) (h) 33182 quasi-flat zones (i) 31155 quasi-flat zones

(j) (k) 20931 quasi-flat zones (l) 20496 quasi-flat zones

(m) (n) 29766 quasi-flat zones (o) 28562 quasi-flat zones

Fig. 1: Comparison of approaches in terms of image simplification: (left column) origi-
nal images, (middle column) results of Cα,ωSoille in RGB, (right column) results of Cα,ω�rgb
in RGB.



Since one can hardly distinguish the differences among the results of Fig. 1, with
the exception perhaps of the relatively large artifact in Fig. 1b, we additionally provide
zoomed versions of the images in Fig. 2. Judging from the obtained results, one can
confirm that in these cases the proposed approach seems to achieve superior quality
level, as it leads to less simplification artifacts (Figs. 2b and 2c), good preservation
of details (Figs. 2e and 2f where the blobs of the starfish arms are better preserved)
and smoother variations (Figs. 2h and 2i where color variation on the cheek of the girl
is smoother) w.r.t. Cα,ωSoille; moreover, all are achieved with similar flat zone numbers.
However, we can also observe that dark-green transition in the background region of
Figs. 2e and 2f and the transition between the background and the neck of the girl
in Figs. 2h and 2i are smoother with Soille’s approach while still presenting visible
variation levels.

4.2 Segmentation

We also test our approach in the segmentation context, where the resulting partitions are
evaluated by means of two criteria: the oversegmentation ratio (OSR) [5] and maximal
precision (MP ) [6]. OSR measures directly the degree of over-segmentation. For MP
on the other hand, each quasi-flat zone is associated with the reference region with
which it shares the highest number of pixels. We then measure a pixel-based precision
by computing the ratio of well-segmented pixels. Hence, by using both MP and OSR,
an effective evaluation and comparison can be achieved, with the ultimate goal being
both the minimization ofOSR and maximization ofMP . These metrics are particulary
adapted to the evaluation of quasi-flat zones as a preliminary segmentation step [13].

To this end, we have selected four images of the BSD, using which we computed
the plots of OSR against MP , shown in Fig. 3. These preliminary results indicate that
our approach is superior to the marginal strategy as it leads to lower over-segmentation
and higher precision levels. However, its performance does not appear to be consistent
across all images, but rather image dependent; a fact which urges us to conduct further
investigation on this matter. As a matter of fact, this comes as no surprise, as it confirms
the results at [2], where the performance of vectorial operators had been also established
to be image-dependent in the content-description context.

5 Conclusion

The strong application potential of quasi-flat zones for image simplification and super-
pixel creation, has been the main motivation behind the high volume of work concen-
trating on them lately. In this paper we focus on a vectorial strategy for their application
to color images, in an effort to enable the use of channel-specific local and global vari-
ation criteria. The proposed approach, which relies on a vector ordering scheme, has
been tested both qualitatively and quantitatively in the contexts of image simplification
and segmentation, against the marginal strategy.

Although both simplification and segmentation tests indicate our approach to be
superior, its performance is not consistent across all tested images. On one hand, its
superiority confirms our original motivation for using vectorial arguments, as it enables



(a) Original (b) Cα,ωSoille (c) Cα,ω�RGB

(d) Original (e) Cα,ωSoille (f) Cα,ω�RGB

(g) Original (h) Cα,ωSoille (i) Cα,ω�RGB

(j) Original (k) Cα,ωSoille (l) Cα,ω�RGB

(m) Original (n) Cα,ωSoille (o) Cα,ω�RGB

Fig. 2: Details of image simplification.
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Fig. 3: OSR and MP based segmentation comparison for marginal (Cα,ωSoille) and vecto-
rial (Cα,ω�rgb) quasi-flat zones using four images of the Berkeley Segmentation Dataset.



exploiting a finer search space for finding the optimal α vector satisfying the global
variation criterion. On the other hand, the image-specific behavior of color orderings,
as observed in different contexts [2], renders this approach relatively impractical for
general use, since the optimal choice of vector orderings as well as the setting of vector
parameters can be challenging.

Consequently, future work will focus principally on how to optimally determine the
color ordering as well as the vector parameters under consideration. Moreover, we also
plan to conduct a more rigorous experimentation in order to detect the limits of our
approach.
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