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a b s t r a c t

Quasi-flat zones are morphological operators which segment the image into homogeneous regions
according to certain criteria. They are used as an image simplification tool or an image segmentation
pre-processing, but they induced a very important oversegmentation. Several filtering methods have
been proposed to deal with this issue but they suffer from different drawbacks, e.g., loss of quality or edge
deformation. In this article, we propose a new method based on existing approaches which achieves bet-
ter or similar results than existing approaches, does not suffer from their drawbacks and requires less
computation time. It consists of two successive steps. First, small quasi-flat zones are removed according
to a minimal area threshold. They are then filled through the growth of remaining zones.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Quasi-flat zones are morphological operators which partition
the image into homogeneous regions according to certain criteria.
They are mainly used for image simplification and image segmen-
tation (through a pre-processing). However quasi-flat zones induce
a very important oversegmentation which is mostly due to tiny
quasi-flat zones composed of a few pixels. As these small regions
do not improve the quality of the QFZ partition, several methods
have been proposed to filter them. These methods reduce the over-
segmentation but suffer from different drawbacks: loss of quality,
edge deformation, etc. So, there is still a need of an efficient meth-
od for quasi-flat zones filtering. Here, we propose such a method
by inspiring from existing approaches while achieving better or
similar results, not suffering from the known drawbacks and
requiring a lower computation time. It consists of two successive
steps. First, small quasi-flat zones are removed according to a min-
imal area threshold. They are then filled through the growth of
remaining zones. This paper is organized as follows. In the next
section, we present the paradigm of quasi-flat zones, their applica-
tions to image analysis and processing, and their related issues.
Section 3 is dedicated to an early introduction of the evaluation
protocol which will be used thorough our paper. We then given

an overview of the state-of-the-art in Section 4. In Section 5, we
introduce our proposal which outperforms current approaches as
shown by the experiments in Section 6. We finally conclude in Sec-
tion 7 and indicate some future directions.

2. Background

2.1. Quasi-flat zones

Flat zones [10] have been studied within the field of Mathemat-
ical Morphology and are seen as elements with interesting proper-
ties. Indeed, a flat zone is defined as a connected set of pixels
having the same value. Since object frontiers in digital images
are mostly located between pixels of different values, object fron-
tiers are expected to be included in frontiers between flat zones.
However, flat zones are often only a few pixels wide so the result-
ing partition is an extreme oversegmentation and is hardly exploit-
able. Less constrained definitions have thus been proposed, leading
for instance to the Quasi-flat zones (QFZ) and more precisely the Ca

(see [12] for a survey on QFZ).
The Ca of a pixel p is defined as the connected set of pixels

which can be reached through (at least) one path verifying the fol-
lowing condition: the difference between values of successive pix-
els within the path is less or equal to a given parameter a (a = 0
being the case of flat zones). However, segmenting an image into
Ca with a > 0 may result in an undersegmentation phenomenon.
If a is set too high, it will lead to a so-called chaining effect, which
may even result in a single QFZ for the whole image. In order to
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counter this problem, several new QFZ definitions based on Ca

have been elaborated (see [12] for more details). These definitions
have been subsequently unified by Soille and Grazzini [11,14], who
propose a theoretical framework called logical predicate
connectivity.

In this new framework, a QFZ (noted CP1 ;...;Pn here) is expected to
satisfy all the n logical predicates Pi. We will denote by PiðSÞ the
fact that a predicate Pi is valid over a set S. Various predicates
may be involved, such as the global range predicate which is true
if and only if the difference between minimal and maximal pixel
values within a QFZ is less or equal to a given threshold x. The
CP1 ;...;Pn thus consists in finding, for each pixel p, the largest Ca

which satisfies all the predicates. Moreover, since the following
property holds:

8a0 6 a; Ca0 ðpÞ# CaðpÞ ð1Þ

an iterative computation scheme may be involved. Indeed, when
predicates are not verified for a given value of a, a is decremented
and a new evaluation of the predicates is performed. This loop is re-
peated until finding the maximal value of a for which all the pred-
icates are verified:

CP1 ;...;PnðpÞ ¼
_

Ca0 ðpÞ
���
8k 2 f1; . . . ;ng; 8a00 6 a0; 8q 2 Ca0 ðpÞ
Pk Ca0 ðpÞ
� �

¼ true and Pk Ca00 ðqÞ
� �

¼ true

8<
:

9=
;

ð2Þ

In the following we will use Ca which only relies on local range
predicate a, and Ca;x which relies on both local range predicate a
and global range predicate x.

Some clues to define QFZ in multivariate images have also been
given by Soille [12], where a is assumed to be a vector with the
same value in all components. Thus a may be easily ordered

through a total ordering (e.g., decrementing a = (3,3,3) gives
a = (2,2,2)). Global range predicate is processed similarly, and is
true only if it is verified marginally for all bands.

2.2. QFZ-based image analysis

Quasi-flat zones are mainly used as an image simplification tool
and as a first step within a segmentation process.

In the context of image simplification, QFZ are interesting since
they produce connected sets of homogenous pixels (according to a
certain criterion). The key idea is to set a unique intensity value for
all pixels belonging to the same quasi-flat zone, for instance its
mean intensity [12]. Other works aim at not only spectrally simpli-
fying the image but also simplifying shapes in the image to ease its
subsequent vectorization [4]. Such image simplifications are used
for compression purpose or image filtering before segmentation.

Indeed, quasi-flat zones can also be considered as a first seg-
mentation step. The resulting partition can then be refined by
merging close and similar quasi-flat zones [3] or using representa-
tive quasi-flat zones as seeds in a seeded segmentation process like
watershed [17] or seeded region merging [6]. They have also been
used to speed up interactive video segmentation [15], by consider-
ing quasi-flat zones instead of pixels as partition elements.

In this article, we will deal with this last application case and
consider quasi-flat zones from a segmentation point-of-view.

2.3. The case of transition regions and isolated pixels

All QFZ definitions suffer from the transition region problem.
These regions are border regions between two objects where there
is a stair effect (cf. Fig. 1b). This effect is due to the image discret-
ization and the interpolation of pixel values induced. It leads to an

Fig. 1. Transition region problem: (a) original image, (b) Stair effect in the white square of the original image, (c) Ca;x using a = x = 100.

Fig. 2. Oversegmentation on lenna: (a) Original image, (b) Ca;x using a = x = 50 (58,219 QFZ), (c) Ca;x using a = x = 100 (34,651 QFZ).
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oversegmentation close to this border which is then composed of
tiny QFZ (cf. Fig. 1c).

This local oversegmentation might be very important and needs
to be lowered in order the QFZ partition to be meaningful. This can
be achieved without any loss of quality in the resulting segmenta-
tion since the oversegmented areas of the image are located on the
border between objects.

Transition regions are not the only cause of oversegmentation.
In fact, they account only for those on contrasted borders (see
Fig. 1 where transition regions are located between the light shoul-
der of Lenna and her dark hairs). Indeed, we may also observe
numerous QFZ made of a single pixel inserted in a wider QFZ
(see Fig. 2). These QFZ are due to isolated pixels (pixels surrounded
by a homogeneous neighborhood). Such QFZ are not useful for im-
age segmentation or simplification, and must be filtered. Moreover,

we can also observe that there are regions which are segmented
into too many QFZ (for instance Lenna shoulder in Fig. 2, whatever
the values of the parameters a and x considered). It is obviously
necessary to filter these regions to keep oversegmentation reduced
and thus still useful.

To achieve oversegmentation reduction, dedicated filtering
methods are required to specifically address small QFZ and transi-
tion regions. Before reviewing these methods, we deal in the next
section with the problem of their evaluation.

3. Evaluation protocol

Before describing quasi-flat zone filtering methods in the fol-
lowing sections, we introduce our evaluation protocol which will
be used thorough our paper to compare the different methods.

Fig. 3. Images from the Berkeley Segmentation Dataset: the original images (top) along with two reference segmentation maps (middle and bottom).

Fig. 4. Transition region filtering: (top) grayscale, (a) Ca;x using a = x = 100 (31,385 QFZ), (b) Transition pixels mask (82% of the image), (c) Transition region mask (19 073
transition regions representing 17% of the image), (d) QFZ after filtering (12,313 QFZ); (bottom) color, (e) Ca;x using a = x = 100 (34,651 QFZ), (f) Transition pixels mask (57%
of the image), (g) Transition region mask (12,743 transition regions representing 9% of the image), (h) QFZ after filtering (21,909 QFZ).
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We have considered here the Berkeley Segmentation Dataset
[8]. It contains 300 color images of size 481� 321 pixels and
3269 reference segmentations, realized by 28 distinct experts.
The relatively high number of reference segmentation maps per
image is significant in the context of our experiments. Indeed, it
enables a more objective comparison between our results and
real-world practical requirements. A sample of the collection along
with reference segmentation maps is provided in Fig. 3.

The comparison between filtering methods is achieved quanti-
tatively by means of a segmentation task. Segmentation being an
ill-posed problem, its evaluation is still an issue (multiple ground
truths are possible depending on the expert involved). Simple cri-
teria as the number of regions is definitely insufficient. In order to
strengthen the objectivity of the experiment under consideration,
we thus employ here two evaluation criteria: the oversegmenta-
tion ratio (OSR) [5] and maximal precision (MP) [7]. The former is
defined as:

OSR ¼ # quasi-flat zones
# reference regions

ð3Þ

This ratio directly expresses the degree of over-segmentation. It
provides us somehow with the merging degree required to achieve
a segmentation as closest to the reference as possible.

The latter rather focuses on pixel-based accuracy by comparing
the reference segmentation and the built quasi-flat zones. More
precisely, each quasi-flat zone is associated with a given reference
region for which it shares the highest number of pixels. It results in
the best possible segmentation we can obtain by an optimal merg-
ing of QFZ. We then measure a pixel-based precision by computing
the ratio of well-segmented pixels:

MP ¼ # well-segmented pixels
total # pixels

ð4Þ

For instance, MP = 0.8 means that we have achieved 80% pixel-
based accuracy w.r.t. the ground-truth. Hence, by using both MP
and OSR, an effective evaluation and comparison might be
achieved, with the ultimate goal being both the minimization of
OSR and maximization of MP.

Having established OSR and MP as evaluation criteria, we pro-
ceeded to apply various quasi-flat zone filtering methods on the
entire Berkeley Dataset (cf. Fig. 8). Multiple references for each im-
age are used individually for evaluation and combined to obtain a
mean evaluation for each image. The plotted results are the mean
of the evaluations obtained on the whole dataset.

4. Comprehensive review of related work

Several approaches have been proposed to deal with the prob-
lems of transition regions and isolated pixels. The goal of this sec-
tion is to provide a comprehensive review of these methods.

Soille and Grazzini [14] define the transition regions as QFZ that
contain only transition pixels. A transition pixel is a pixel which is

not a local extremum, i.e. which is not surrounded by either lower
or higher values only.

The approach proposed by Soille and Grazzini consists in
removing all the QFZ which are transition regions, i.e. regions with-
out local extremum. The resulting incomplete image partition is
then corrected by using a region-merging algorithm (here the
Seeded Region Growing (SRG) [1]). The remaining QFZ are used
as seeds and grow until the partition of the image is complete.
The authors also proposed an extension of their approach dedi-
cated to color images. The key idea is to consider that a pixel is a
transition pixel only if it is a transition pixel in every color band
of the image.

Fig. 4 illustrates this approach both in grayscale and color case,
and provides final as well as intermediary results. Amounts of QFZ
are heavily reduced (60.7% in grayscale and 36.8% in color) but the
oversegmentation is still important after the filtering of transition
regions. While transition pixels account for most of the image pix-
els, transition regions represent only a much smaller part of the
image because of their strict definition. In fact, local extrema, even
if fewer than transition pixels, are well distributed in the image.
Due to the stricter definition of color transition pixels, we can ob-
serve the difference between color and greyscale transition re-
gions. This approach does not need any parameter thanks to a
precise definition of transition region. However, many regions
made of few pixels remain after the transition region filtering.
These regions do not fit the transition region definition but induce
an important oversegmentation, as noticed in Section 2.3.

Soille [13] proposed a preprocessing of the original image in-
stead of a postprocessing of the QFZ. This preprocessing consists
in an image contrast reinforcement based on local extrema. First,
local extrema of the image are extracted (cf. Fig. 5.a). Then, these
extrema are used as seeds in a region growing process in order
to obtain a partition of the image called mosaic of local extrema
(cf. Fig. 5b). Each pixel is then valued by the value of the local
extremum used as seed for its region. This leads to a new image
which contrast has been reinforced (cf. Fig. 5c). This preprocessing
strengthens the edges in the image thus limiting the stair effect
responsible of the majority of transition regions. Finally, QFZ are
built from this image (cf. Fig. 5d).

The filtering by local extrema mosaic induces an image simpli-
fication which let the subsequent QFZ partition to be far less over-
segmented. However, we can still notice numerous QFZ made of a
single pixel which prevent the oversegmentation to be considered
as acceptable. Moreover, the contrast reinforcement modifies the
edges of the processed image. This can be observed on the edges
of Lenna’s mirror (cf. Fig. 2 and 5.d). This modification has a direct
impact on the quality of the QFZ partition in terms of boundary
accuracy.

To accurately deal with isolated pixels, some authors have
introduced filtering methods based on a minimal area threshold.
Angulo [2] proposed to merge QFZ with an area lower than a
threshold. QFZ are mapped to a region adjacency graph (RAG)

Fig. 5. Filtering by local extrema mosaic: (a) local extrema mask (43% of the image), (b) local extrema mosaic (112,461 regions), (c) original image with reinforced contrast,
(d) Ca;x using a = x = 100 on reinforced contrast image (8,045 regions).
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where nodes represent QFZ and are valued by their mean color and
area. Every vertex represents the adjacency link between two QFZ
and is valued by the difference of mean colors of these two QFZ.
The filtering proceeds by reducing this graph until all remaining
QFZ have an area greater or equal to the threshold. The merging
process is the following: the smallest QFZ is merged with the most
chromatically similar adjacent QFZ, then the RAG is updated (node
and vertex values). This process is repeated until no QFZ has an
area lower than the minimal area threshold. Even a small threshold
value leads to removing few pixels QFZ and transition regions.
However, as small QFZ are merged with adjacent QFZ, it is possible
that these adjacent QFZ are also small QFZ and then, the filtering
can produce QFZ greater than the threshold but only composed
of small QFZ such as transition regions (cf. Fig. 6). Since boundaries
are generally present in such QFZ (especially transition regions), it
might alleviate the partition accuracy.

Zanoguera [17] proposed an approach based on a similar princi-
ple. It also aims at removing QFZ with an area lower than a given
threshold. To obtain a complete partition of the image, remaining
QFZ are used as markers for marker-based watershed algorithm

[9]. These QFZ are then extended in the space from which small
QFZ have been removed. Contrary to Angulo’s approach, there is
no risk to obtain QFZ only composed of transition regions.
However, the watershed is applied on pixels, so the removed QFZ
information and the data reduction they induce are lost. It calls
for an improvement by applying watershed on QFZ instead of
pixels. Such an extension would preserve QFZ information
(particularly their accurate boundaries) and speedup the filtering
by working on the reduced data.

Crespo et al. [6] dealed with flat zones. The idea is to select the n
most significant flat zones (depending to some criteria) as seeds in
a region growing process applied on flat zones. Thus a precise
over-segmentation reduction is obtained as the desired number
of remaining flat zones has to be set. Moreover, the region growing
is not applied on pixels but rather on flat zones. This ensures to
keep accurate borders from flat zones and to limit computation
cost since the region growing algorithm is applied on a reduced
data volume. This method may be adapted to QFZ, but the
parameter n is rather hard to be set since it is strongly image
dependent.

Fig. 6. Enlargement of small QFZ after filtering on magnified top of lenna. (a) original, (b) Ca;x with a = x = 100, (c) Angulo’s method (area threshold = 5), (d) Iterative area
filtering (area threshold = 5), (e) Zanoguera’s method (area threshold = 5) (no small QFZ enlargement).

Fig. 7. Iterative area filtering with Ca;x: (top) a = x = 50 (a) non-filtered QFZ (58,219 QFZ), (b) threshold = 5 (11,423 QFZ), (c) threshold = 10 (6,335 QFZ), (d) threshold = 15
(4,528 QFZ), (bottom) a = x = 100 (e) non-filtered QFZ (34,651 QFZ), (f) threshold = 5 (6,381 QFZ), (g) threshold = 10 (3,386 QFZ), (h) threshold = 15 (2,411 QFZ).
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Brunner and Soille [4,13] proposed an iterative area filtering
method. Similarly to previous methods, it aims at removing QFZ
with area lower than a threshold. However, instead of removing
all these QFZ in a single step, the removal is done by iteratively
increasing the area threshold until the final threshold:

1. Area threshold is set to 2;
2. QFZ with area lower than the threshold are removed;
3. Partition is completed using remaining QFZ as seeds in a SRG

algorithm;
4. If the current area threshold is not the final threshold, it is

increased and the process go back to step 2, otherwise the filter-
ing is achieved.

Since filtering is progressive, it avoids poor results induced by
the fact that remaining QFZ (i.e. larger than the threshold)

represent a small part of the image in case of a high threshold va-
lue. This approach thus filters few pixel QFZ and transition regions,
but is also able to significantly reduce the over-segmentation when
considering a high threshold value. In our example, we observe on
Fig. 7 that the over-segmentation is further reduced w.r.t. other
methods. However, we can notice that all transition regions have
not been removed. Indeed, some have been enlarged by integrating
pixels from removed QFZ and thus having an area greater than the
final threshold. This leads to the production of transition regions
wider than the original region transitions, while their filtering
was expected (cf. Fig. 6). Moreover, the region growing process is
applied on pixels: as it has been suggested for the previous meth-
od, applying such a process directly on QFZ looks more relevant.

Existing QFZ filtering approaches allow to reduce the important
oversegmentation induced by QFZ. However, the oversegmenta-
tion is still high especially with non-parametric methods which

Fig. 8. Existing QFZ filtering approaches comparison using Cða;xÞ on Berkeley Segmentation Dataset.

Fig. 9. Filtering approaches based on minimal area threshold comparison using Cða;xÞ on Berkeley Segmentation Dataset with different values of minimal area threshold.

Fig. 10. QFZ area filtering by merging: (a) original QFZ, (b) Removal of QFZ which area is less to the area threshold, (c) first SRG iteration: QFZ 1 � QFZ 3, (d) second SRG
iteration: QFZ 1 � QFZ 4, e) last SRG iteration: QFZ 2 � QFZ 5.
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mainly aim at filtering transition regions. Filtering approaches
based on minimal area threshold reduce more efficiently the over-
segmentation effect. Nevertheless, these approaches also suffer
from some drawbacks: transition regions may be enlarged by
aggregating small QFZ or parts of them, small QFZ may be removed
while loosing their related information and the data compression
power. Moreover, a minimal area threshold has to be set. Its value
depends on the image content. In the case of an image with a wide
(resp. small) object of interest, the threshold should be set high
(resp. low). This is is illustrated in Fig. 8 where we can observe that
the parametric approaches (iterative area filtering, Angulo’s and
Zanoguera’s methods) lead to a greater oversegmentation reduc-
tion. Nonetheless, we also notice that a improving the oversegmen-
tation reduction through the use of a higher threshold often comes
at the cost of a lower maximal precision (cf. Fig. 9). So the thresh-
old has to be set carefully and this is far from being trivial. We ad-
dress these various issues in the next section.

5. Proposed method

In this section, we propose an original approach for QFZ filtering
called area filtering by merging. We also evaluate the interest of
working on QFZ rather than on pixels, give some clues to set the
area threshold more easily and finally discuss the drawbacks and
the advantages of our approach w.r.t. the state-of-the-art.

5.1. Definition

While failing to achieve accurate and effective oversegmenta-
tion reduction, existing approaches bring relevant features which
are worth being considered. Thus we also consider the use of an
area threshold. A merging process is also considered, thus leading
to a 2-step approach:

Fig. 11. QFZ area filtering by merging on Cða;xÞ: (top) a = x = 50; (a) original QFZ (58;219 QFZ); (b) area threshold = 5 (8;014 QFZ); (c) area threshold = 10 (3;572 QFZ); (d)
area threshold = 15 (2;219 QFZ); (bottom) a = x = 100; (e) original QFZ (3;4651 QFZ); f) area threshold = 5 (4;600 QFZ); g) area threshold = 10 (2;051 QFZ); h) area
threshold = 15 (1;252 QFZ).

Fig. 12. Comparison between filling removed QFZ using an SRG over QFZ and over pixels, using the proposed filtering approach with Cða;xÞ on Berkeley Segmentation Dataset
with different values of minimal area threshold.

Table 1
Average computation time comparison between filling removed QFZ using an SRG
over QFZ and over pixels, using the proposed filtering approach on Berkeley
Segmentation Dataset with different settings for a/x and area threshold. Computa-
tion times correspond to a Java implementation of the algorithms performed on Intel
Core i7 Q 720 CPU (1.60 GHz).

a/x Area Thresh. Computation time (ms)

QFZ-based reconstruction Pixel-based reconstruction

50 5 62 126
10 65 132
15 67 128
20 69 142

100 5 56 92
10 51 70
15 51 155
20 52 160
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(1) Removal of QFZ which area is less to the area threshold;
(2) Growing of the remaining QFZ using a SRG on the removed

QFZ.

Instead of applying the partition completion on pixels, we apply
it on QFZ in order to keep related information. Thus, the SRG is ap-
plied on the reduced data made from QFZ.

Fig. 10 illustrates the filtering process. Here QFZ are represented
by mean colors of their pixels (Fig. 10a). Small QFZ are removed but
their spatial definition (i.e. the covered pixels) and mean color are
kept (cf. Fig. 10b, removal of QFZ 3, 4 and 5). The SRG algorithm is
then applied directly on QFZ using remaining QFZ as seeds (cf.
Fig. 10.c-e). At the end of the filtering process, remaining QFZ rep-
resent a complete image partition.

Fig. 11 illustrates our filtering approach applied on Cða;xÞ. The
oversegmentation is greatly reduced even with small area thresh-
old values. Compared to iterative area filtering results (Fig. 7), we

observe that our method reduces more significantly the overseg-
mentation. Indeed, our approach does not face the problem of iter-
ated QFZ aggregation stated in Section 4. In case of high threshold
values, our method may induce some undersegmentation of some
parts of the image while the iterative area filtering keeps too many
regions and may enlarge transition regions.

Fig. 13. Illustration of detail conservation with the example of Lenna’s eyes and different area threshold and a/x values.

Table 2
Qualitative analysis of QFZ filtering methods.

Drawbacks Methods

½14� ½13� ½2� ½17� ½4� Ours

Enlargement of transition regions X X
Inability to remove small QFZ X X
Spatial shift of edges X
Loss of QFZ information X X X
Parameter settings X X X X
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5.2. QFZ-based reconstruction vs. pixel-based reconstruction

We are proposing to fill removed QFZ through a QFZ-based ap-
proach rather than pixelwise. Thus we are able to keep QFZ related
information and to deal with reduced data (QFZ instead of pixels).
We evaluate here such a strategy, both qualitatively and
computationally.

In Fig. 12, we compare results obtained with both strategies.
Surprisingly, we can observe that, for a given threshold value, the
two strategies lead to similar quality while we would have ex-
pected the pixel-based reconstruction to be the most accurate. This
is probably true for high value of the area threshold, but such val-
ues are not mandatory: indeed, a low threshold (here between 5
and 20) leads to a good trade-off between oversegmentation
reduction and filtered QFZ accuracy. In such a setup, the recon-
struction mainly consists of filling small holes composed of a few
pixels only. Proposed strategy relying on reconstruction over QFZ
is thus particularly relevant.

This observation is further strengthened when observing com-
putation time. Indeed, we can observe, as expected, that the QFZ-
based reconstruction achieves the best results (cf. Table 1) since
it operates on reduced data.

To sum up, using QFZ rather than pixels as elements on which
to fill the removed QFZ has been prove to be the best strategy. It
ensures a similar quality compared to pixelwise approach, while
lowering the computational cost.

5.3. Area threshold selection

Our filtering approach requires a single parameter to be set, in
order to define the minimal area of QFZ. While this parameter is
simple and easily understandable, its setting might be far from
intuitive. Moreover, it has to be set empirically since the ‘‘best’’
minimal area depends on the image content: a too low (resp. high)
value may lead to undersegmentation (resp. oversegmentation) ef-
fects. This threshold thus depends on both image properties and
user needs. In the context of image segmentation, small details
might only be extracted through a great oversegmentation. On
the contrary, coarse and efficient segmentation of a wide object
will require a weak oversegmentation. Setting the minimal area
threshold is complex and not so intuitive.

To overcome this problem, we propose two alternative and
more intuitive parameters from which we can set the minimal area
threshold:

(1) Amount of remaining QFZ after filtering (similar to [6] for
flat zones);

(2) Simplification ratio (i.e., percentage of QFZ to keep after
filtering).

Let us note that these two parameters are linked and may be de-
duced one from the other:

Percentage of QFZ to keep ¼ number of remaining QFZ
total number of QFZ

ð5Þ

and they represent somehow a compression ratio of the QFZ
partition.

The minimal area threshold is set to the highest area which sat-
isfies the constraint (e.g., number of remaining QFZ).

These parameters are more intuitive to set for a user and do not
depend anymore on the image spatial resolution. Nevertheless, an
automatic setting is still hardly achievable, while the optimal
threshold is related to the user goal and the image content. Fur-
thermore, the need of keeping small details may lead to very small
area threshold values (thus lowering the impact of the proposed
approach). However, we have not observed such a need on real sce-
narios where most often details remain after filtering. To illustrate,
Fig. 13 shows the detail conservation even with relatively high area
threshold values. We can also observe that the segmentation qual-
ity is more sensitive to a/x than to the area threshold. Our filtering
method only filters transition regions, isolated pixel and very small
QFZ. Image details (even as small as Lenna’s eyes) are too large to
be filtered. In practice, selecting a area threshold value between
10 and 20 lead to satisfying results since it ensures an important
oversegmentation reduction while keeping important details such
as Lenna’s eyes.

5.4. Discussion

Existing approaches suffer from several drawbacks: (1) enlarge-
ment of transition regions, (2) inability to remove small QFZ, (3)
spatial shift of edges, (4) loss of QFZ information, and (5) parameter
settings. In Table 2, we provide a survey of the state-of-the-art
(including also our contribution) w.r.t. these drawbacks. It clearly
shows that the only drawback of our approach is the need of
parameter settings, while other methods face more cons. Indeed,
transition regions are not enlarged with our method since QFZ re-
moval is not an iterative process based on threshold area incre-
mentation. Moreover, small QFZ made of few pixels are not kept
as all QFZ smaller than the area threshold are removed. Further-
more, image edges are not shifted since we rely on QFZ edges,
which are part of image edges. Finally, our method performs the
reconstruction process on QFZ rather than pixels, ensuring thus
to keeps QFZ-related information.

Besides having less drawbacks, our approach also presents
some great advantages. Indeed, performing the reconstruction on
QFZ rather than pixelwise leads to a strong decrease of the compu-
tation time. This does not come with a lower quality of the result-
ing QFZ. This property is of first importance in the context of image
segmentation, as it will be shown in the next section.

Fig. 14. Comparison of our approach (area filtering by merging) and existing filtering methods based on an area threshold using Ca;x on the Berkeley Dataset.
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6. Experiments

To evaluate the effectiveness of our filtering approach, we per-
formed an extended experimental comparison with related work,
following the protocol given in Section 3.

Since parametric approaches have been shown to provide the
best results among existing filtering methods (Fig. 8), we consider
them as a fair representative of the state-of-the-art. The quantita-

tive evaluation using MP and OSR on the whole Berkeley dataset is
given in Fig. 14 and some qualitative results are shown in Fig. 15
for a visual evaluation. We can observe that, for a given level of
precision, our method is able to achieve greatest oversegmentation
reduction. Nevertheless, the quality is only slightly better than
with Zanoguera’s approach, and our method fails to achieve
highest levels of precision. This might be explained by the fact that
our method does not modify QFZ boundaries, while iterative area

Fig. 15. Visual illustration of results obtained by parametric approaches using Ca;x on the Berkeley Dataset with a/x = 50 and an area threshold = 10. (a) original image; (b)
unfiltered QFZ; (c) iterative area filtering; (d) Angulo’s approach; (e) Zanoguera’s approach, (f) area filtering by merging (proposed approach).
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filtering is able to correct them by filling the removed QFZ on a pix-
el basis. Nevertheless, assuming initial QFZ ensure sufficient accu-
racy, our approach greatly decreases the computational cost by
working on the QFZ rather than on the pixels. Furthermore, it is
not based on an iterative merging process like Angulo’s approach
(having a higher precision but also a higher oversegmentation).

In order to achieve a fully fair comparison with iterative ap-
proaches, we also designed an iterative version of the proposed fil-
tering approach. Results are given in Fig. 16 and show a similar
behavior with the two existing iterative approaches (Iterative area
filtering and Angulo’s method). Thus, applying the SRG on QFZ in-
stead of pixels does not significantly influence the result quality
while lowering the computation time (cf. Table 3). We can con-
clude that our approach and its iterative version are more relevant
than the existing iterative filtering methods. We nevertheless sug-
gest the use of the non-iterative definition, since it makes possible

to work on reduced data (cf. Figs. 14 and 16) and and thus comes
with a lower computational cost (cf. Table 3).

Zanoguera’s filtering method has been shown to provide only
slightly lower results when compared to our method. So, we fur-
ther compare these two methods using different threshold values,
see Fig. 17. We can observe that our approach always comes first,
but the difference becomes negligible when the threshold value in-
creases. Still, computational complexity stays an advantage of our
method when compared to Zanoguera’s (cf. Table 3).

The experimental evaluation and comparisons with state-of-
the-art approaches described in this section support the relevance
of our contribution which outperforms existing approaches (both
from a quality and computation point-of-view).

While we aim in this paper to introduce a new QFZ filtering
method and to show how it outperforms related work, we also
illustrate the relevance of this approach in the context of image
segmentation. To do so, we rely on previous works [15,16] where
interactive video segmentation has been achieved using filtered
QFZ as a pre-segmentation step, leading to better results while
decreasing the computation time. Fig. 18 illustrates the relevance
of QFZ filtering in the context of QFZ-based interactive segmenta-
tion. While QFZ filtering only slightly improve the visual quality of
the segmentation, it has a great impact on the overall computation
time. Indeed, the segmentation process requires 9,401 ms when
operating on the whole set of QFZ, but only 150 ms if filtered
QFZ are considered. This is of course due to the strong reduction
in the amount of QFZ, from 432,596 QFZ before filtering to 6,316
after. Moreover, we also compare QFZ-based and filtered QFZ-
based segmentation on the Berkeley segmentation dataset. Sample
results are provided in Fig. 19 and confirm on still images the con-
clusions driven from segmentation on video sequences. Using fil-
tered QFZ leads to results of similar (or slightly better) quality
but greatly decreases the computation time as already indicated.
Within an interactive segmentation framework, the computation
time required by the segmentation process is of first importance.

Fig. 16. Comparison of the iterative version of our approach, iterative area filtering and Angulo’s approach with Ca;x on the Berkeley Dataset.

Table 3
Comparison of average computation times obtained for Berkeley dataset images, with
the proposed approach, its iterative version and the parametric existing approaches
through different combinations of a/x and area threshold. Computation times
correspond to a Java implementation of the algorithms performed on Intel Core i7 Q
720 CPU (1.60 GHz).

a/
x

Min.
area

Computation time (ms)

Proposed Iterative
Area Filt.

Zanoguera Angulo Proposed
(iterative)

50 5 62 292 160 131 199
10 65 368 165 188 202
15 67 448 123 190 291
20 69 519 146 189 379

100 5 56 285 112 161 92
10 51 347 109 190 175
15 51 400 135 189 250
20 52 469 140 194 329

Fig. 17. Comparison of our approach and Zanoguera’s approach with Ca;x on the Berkeley Dataset.
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Fig. 18. QFZ-based video segmentation on a sample frame of the carphone video sequence: (a) Original frame, (b) Markers provided by the user, (c) QFZ (a = x = 50), (d)
Filtered QFZ (area threshold = 20), (e) Segmentation result using QFZ, (f) Segmentation result using filtered QFZ.

Fig. 19. QFZ-based segmentation on sample images from Berkeley Dataset. Each segmentation is provided by the initial number of QFZ and the computation time required by
the marker-based segmentation.
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Thus the filtering method proposed in this paper is of high interest
in this context.

The QFZ filtering step also brings some noise robustness to QFZ,
which are critically sensitive to such artifcats. In fact, the QFZ
parameter a is defined as a local difference between pixel values.
Such kind of distance is very sensitive to noise, especially to salt
& pepper noise. Salt & pepper noise induces local extrema composed
of isolated pixels, which are completely filtered by our approach.
Fig. 20 illustrates this advantage and also shows a comparison of
interactive segmentations of a noisy image when relying on initial
vs. filtered QFZ. As expected, many small QFZ are produced from
the noisy image (25,842 QFZ). They are all filtered by our approach,
leading to a very low number of QFZ (179 QFZ). Moreover, the
interactive segmentation based on the filtered QFZ is faster
(14 ms vs. 448 ms) and more accurate than the one based on unfil-
tered QFZ. Indeed, in the image of Fig. 20, the tallest tree is not cor-
rectly segmented using the QFZ, due to noise effects, while it is
correctly segmented using filtered QFZ. This example illustrates
the relevance of our filtering approach in the presence of noise,
allowing in such a case the QFZ-based interactive segmentation
process to achieve better results.

7. Conclusion

QFZ are connected sets of homogeneous pixels, which might be
further aggregated to achieve image simplification or image seg-
mentation. However, all QFZ definitions inherently lead to overseg-
mentation effects. While several filtering methods have been
proposed in the literature to tackle this problem, none of them
has be shown totally satisfying. Thus we have proposed in this pa-
per a new QFZ filtering method based on an area threshold remov-
ing small QFZ, followed by a filling of removed parts by remaining
QFZ. A way to intuitively set the area threshold as a compression
ratio has also been introduced. Finally, an experimental compari-
son with the state-of-the-art has been performed to highlight the
relevance of our proposal.

Future works will focus on the metrics used to merge the QFZ in
the SRG step. Furthermore, we currently select the QFZ to be re-
moved using an area criterion. In some cases, one might want to
remove large QFZ while keeping some small ones. A deeper study
on possible criteria will improve the filtering process and allows to
reduce more efficiently the oversegmentation without loss of
accuracy.
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