

U B S

Université de Bretagne-Sud

Spatio-Temporal Quasi-Flat Zones for Morphological Video Segmentation

Jonathan Weber † Sébastien Lefèvre ‡ Pierre Gançarski † † LSIIT, University of Strasbourg, France ‡ VALORIA, University of South Brittany, France

Context

Video segmentation issues:

- Large amount of data to be segmented (in the context of video mining)
- Low computation time is required (for interactive segmentation)
- Segmentation is user-dependent: personalization is needed

Proposed solutions:

- Efficient segmentation relying on an offline reduction of the data space
- User-driven segmentation with iterative feedback

Quasi-Flat Zones

Quasi-Flat Zones (QFZ):

- Connected areas of homogeneous pixels
- 2 homogeneity criteria are mainly used:
 - Local range (α)
 - Global range (ω)

QFZ definitions were unified by Soille [PAMI 2008] under constrained connectivity (using logical predicates).

1.Extension of QFZ to video data

2.Marker-Based Quasi-Flat Zones

- Straight extension (video = 3D volume) is not adapted
- Sequential processing of spatial and temporal dimensions is more relevant
 - \Rightarrow induces an incremental approach for QFZ production

- Filtering criterion to reduce amount of QFZs: spatial mean area (*area*^{*})
- Result is an efficient reduction of the data space, e.g., *carphone* extract

- 2-step personalized segmentation:
 - (a) Production of spatio-temporal QFZ (offline)
 - Objects of interest are marked by the user and (b)QFZ are subsequently merged according to these markers (online)

- parameters: $\alpha = \omega = 20$, $area^* = 10$
- 30 671 QFZ with 2D + t approach
- 4 713 QFZ with t + 2D approach

3.Experiments and results

Set 2

Set 1	

carphone

foreman

			Mean Jaccard-Index				
Method	$lpha,\omega$	$area^*$	carp	hone	forei	man	
			Set 1	Set 2	Set 1	Set 2	
	30	10	0.782	0.905	0.710	0.952	
MBQFZ 2D+t	50	50	0.825	0.910	0.674	0.884	
	90	50	0.793	0.908	0.791	0.859	
	20	60	0.767	0.928	0.695	0.944	
MBQFZ t+2D	40	100	0.749	0.925	0.656	0.940	
	100	70	0.781	0.919	0.637	0.935	
SRG	-	-	0.641	0.548	0.529	0.400	
MBWS	-	_	0.749	0.897	0.634	0.946	

Results obtained on *carphone* extract (80 frames) and *foreman* extract (40 frames) with two sets of markers only defined on the median frame.

Computing time in ms

Marker extraction	QFZ mapping on adjacency graph
Image: stress of stress o	graph merging
Segmen	ted video

Conclusion and Perspectives

Τ .	•	• 1	· · · •	1 •	

Method	O(1)	$H \rightarrow F7$ Computing time in I	Computing time in me		
IVIETIOU	α, ω	πQ1Z	Offline	Online (per fram	
	10	28 612	44 390	528	(1.39)
MBQFZ 2D+t	20	30 671	35 510	550	(1.44)
	30	27 713	38 762	508	(1.33)
$area^* = 10$	40	22 202	43 280	364	(0.96)
	50	18 501	46 343	326	(0.86)
	10	3 772	44 781	108	(0.28)
MBQFZ t+2D	20	4 713	32 080	123	(0.32)
	30	4 6 4 9	26 957	116	(0.30)
$area^* = 10$	40	3 842	26 128	107	(0.28)
	50	3 147	25 133	98	(0.26)
SRG	_	_	0	56 636	(148.65)
MBWS			3 354	17 312	(45.44)
Offline and online computation times required to process					
whole <i>carphone</i> sequence $(9656064 \text{ pixels}, 176 \times 144 \text{ on } 381 \text{ fram})$					

Interactive video segmentation driven by QFZ: • efficient reduction of the input data space • personalized segmentation from iterative user feedback • low online computational cost during iterative steps

Future works:

• improve the user feedback (marker refinement) • application to other data spaces (e.g., optical flow) • extension to cosegmentation (i.e., segment a complete video dataset from a few user-driven segmentations)

ISMM 2011

10th Int. Symposium on Mathematical Morphology 6th-8th July 2011 - Intra, Lake Maggiore, Italy