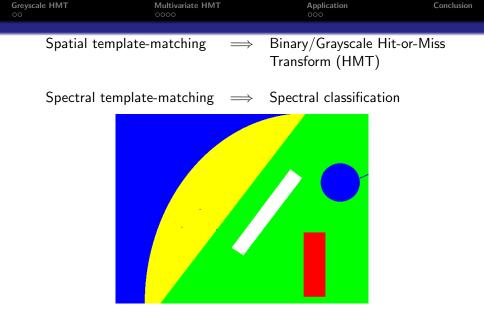
Greyscale HMT

Multivariate HMT

Application

Conclusion


A multivariate Hit-or-Miss Transform for conjoint spatial and spectral template matching

Jonathan Weber and Sébastien Lefèvre

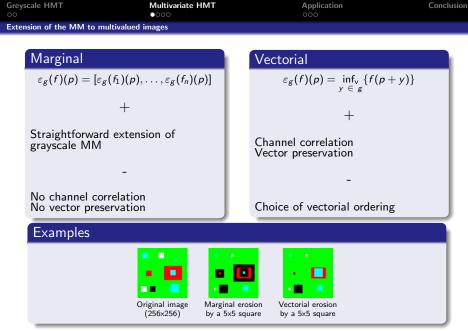
LSIIT, CNRS / University Louis Pasteur - Strasbourg I

July 2, 2008

Goal: detect blue-yellow borders

How to combine both kinds of information ?

Jonathan Weber and Sébastien Lefèvre A multivariate Hit-or-Miss Transform


Greyscale HMT ●○	Multiva 0000	riate HMT	Application	Conclusio
Greylevel mather	natical morphology			
Flat e	rosion and dilatior	for greyleve	el images	
		$f(p) = \inf_{y \in Y}$		(1)
	$\delta_B(f$	$f(p) = \sup_{y \in y}$	$p_{\breve{B}}\{f(p+y)\}$	(2)
Using	a structuring function	ι is possible bι	ıt less frequent	
Exam	oles			
	Original image (256×256)	Image ered by a 5x5 squ		mage dilated y a 5x5 square

Jonathan Weber and Sébastien Lefèvre A multiv

A multivariate Hit-or-Miss Transform

Greyscale HM٦ ○●		Multivariate HI	MT	Application	Concl	usion
Definition of H	MT on greylevel i	images				
Fitti	ng					
	Fitti	$\log_{(B_1,B_2)}(f)($	$p) = arepsilon_{B_1}(f)(p)$	$\phi) > \delta_{\breve{B}_2}(f)(f)$	p) (3)	
Valu	ation					
	Valuation _{(E}	/	$= \varepsilon_{B_1}(f)(p)$ $= \varepsilon_{B_1}(f)(p)$		(Ronse) (4)) (Soille) (5)	
Exan	nples					
Or	iginal image (64x64)	SEs used for processing of HMT	Fitting result	Image result of HMT by Ronse	Image result of HMT by Soille	

Jonathan Weber and Sébastien Lefèvre A multivariate Hit-or-Miss Transform

E. Aptoula, S. Lefèvre, A Comparative Study on Multivariate Mathematical Morphology, Pattern Recognition, Vol. 40, No. 11, november 2007, pages 2914-2929.

Greyscale HMT	Multivariate HMT	Application	Conclusion
	0000		
A combined approach			

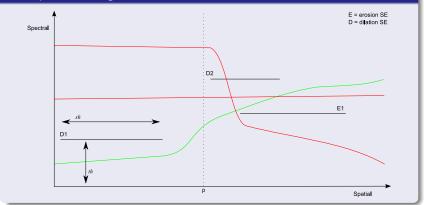
Multivariate Hit-Or-Miss Transform formulation

Fitting

$$\mathsf{Fitting}_B(f)(p) = \begin{cases} \varepsilon_{B_{sh}}(f_{B_b})(p) \ge B_{th} & \text{if } B_{ty} = \varepsilon \\ \delta_{B_{sh}}(f_{B_b})(p) \le B_{th} & \text{if } B_{ty} = \delta \end{cases}$$
(6)

$$\operatorname{Fitting}_{S}(f)(p) = \bigcap_{B_{i} \in S} \operatorname{Fitting}_{B_{i}}(f)(p) \tag{7}$$

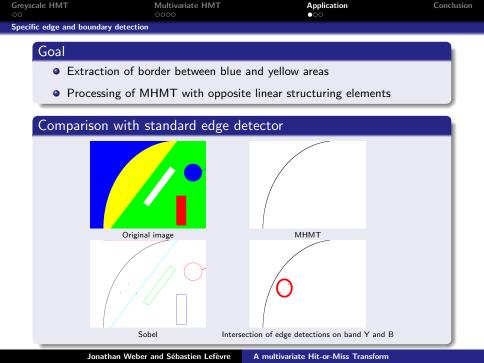
Valuation


$$\mathsf{Valuation}_{B}(f)(p) = \begin{cases} \frac{\varepsilon_{B_{sh}}(f_{B_{b}})(p) - B_{th}}{f_{B_{b}}^{+} - B_{th}} & \text{if } B_{ty} = \varepsilon \\ \frac{\delta_{B_{sh}}(f_{B_{b}})(p) - B_{th}}{f_{B_{b}} - B_{th}} & \text{if } B_{ty} = \delta \end{cases}$$
(8)

$$Valuation_{S}(f)(p) = \frac{1}{|S|} \sum_{B_{i} \in S} Valuation_{B_{i}}(f)(p)$$
(9)

MHMT SE are defined by shape(*sh*), band(b), threshold(th) and type(ty). [f^-, f^+] is the pixel value range in f.

Greyscale HMT	Multivariate HMT	Application	Conclusion
	0000		
A combined approach			


Greyscale HMT	Multivariate HMT	Application	Conclusion
	0000		
Properties of our approach			

Advantages

- Adapted to multivalued images
- Both spatial and spectral informations are considered
- Domain-knowledge may be involved
- The number of SE is not limited to a pair (erosion or foreground SE, dilation or background SE)
- No unique value range for the different bands is required
- Faster than standard HMTs

Drawbacks

- SE construction is not trivial
- Not robust to noise
- Band correlation is considered only through a fusion operator

Greyscale HMT

Multivariate HMT

Application ○●○ Conclusion

Coastline Extraction

Coastline Extraction on Normandy Coast

QuickBird image at spatial resolution of 2.4 m / pixel ((c)Digitalglobe)

Average location error

Wetlands areas	Soft rock hillslope	Sandy beaches with dunes	Hard rock cliff
0.45	2.32	1.79	0.35

A. Puissant, S. Lefèvre, J. Weber, Coastline extraction in VHR imagery using mathematical morphology with spatial and spectral knowledge, ISPRS 2008 Congress, Beijing, China, July 2008

Greyscale HMT

Multivariate HMT

Application ○○● Conclusion

Other results

Coastline Extraction at different resolutions

30m/pixel

20m/pixel

10m/pixel

5m/pixel

Comparison with Bagli's method for coastline extraction

	30m	20m	10m	5m
Bagli and Soille, 2003				
MHMT	0.035	0.195	0.79	0.079

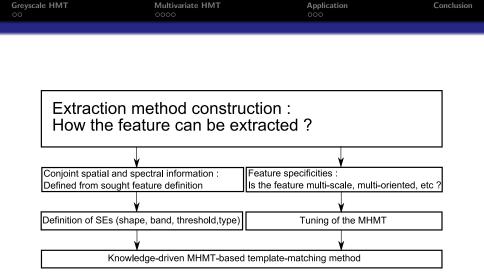
Jonathan Weber and Sébastien Lefèvre A multivariate Hit-or-Miss Transform

Greyscale HMT	Multivariate HMT	Application	Conclusion

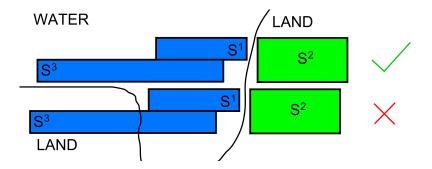
Contribution of this work

- A HMT formulation adapted to multivalued images and combining spatial and spectral information
- A relevant method for extracting specific edges and boundaries

Future works


- Apply MHMT to other fields
- Ensure robustness to noise
- Use of structuring functions
- Semi-automatic methods for SE definition

Greyscale HMT	Multivariate HMT	Application	Conclusion


Thanks to ANR-JC ECOSGIL project for remote sensing data and financial support

Extraction Littoral ECOSGIL Connaissances

http://ecosgil.u-strasbg.fr/

