Vectorial Quasi-flat Zones for Color Image Simplification

Erhan Aptoula, Jonathan Weber, Sébastien Lefèvre

ISMM 2013 11th International Symposium on Mathematical Morphology Uppsala, Sweden

May 29th, 2013

	Vectorial QFZ	

- 3 Vectorial Quasi-Flat Zones
- Experiments
- 5 Conclusion and Perspectives

	Vectorial QFZ	

- 3 Vectorial Quasi-Flat Zones
- 4 Experiments
- 5 Conclusion and Perspectives

	Vectorial QFZ	

- 3 Vectorial Quasi-Flat Zones
 - 4 Experiments
- 5 Conclusion and Perspectives

	Vectorial QFZ	

3 Vectorial Quasi-Flat Zones

4 Experiments

5 Conclusion and Perspectives

	Vectorial QFZ	

3 Vectorial Quasi-Flat Zones

4 Experiments

Context	Vectorial QFZ	Conclusion
Notations		

Path

A path $\pi(p \rightsquigarrow q)$ of length N_{π} between any two elements $p, q \in E$ is a chain (noted as $\langle ... \rangle$) of pairwise adjacent pixels:

$$\pi(p \rightsquigarrow q) \equiv \langle p = p_1, p_2, \dots, p_{N_{\pi}-1}, p_{N_{\pi}} = q \rangle$$

Dissimilarity metric

Dissimilarity measured between two pixels p to q is the lowest cost of a path from p to q, with the cost of a path being defined as the maximal dissimilarity between pairwise adjacent pixels along the path:

$$\widehat{d}(p,q) = \bigwedge_{\pi \in \Pi} \left\{ \bigvee_{i \in [1,...,N_{\pi}-1]} \left\{ d(p_i, p_{i+1}) \mid \langle p_i, p_{i+1} \rangle \text{ subchain of } \pi(p \rightsquigarrow q) \right\} \right\}$$

with Π the set of all possible path between p and q

Context	Vectorial QFZ	Conclusion
Notations		

Path

A path $\pi(p \rightsquigarrow q)$ of length N_{π} between any two elements $p, q \in E$ is a chain (noted as $\langle ... \rangle$) of pairwise adjacent pixels:

$$\pi(p \rightsquigarrow q) \equiv \langle p = p_1, p_2, \dots, p_{N_{\pi}-1}, p_{N_{\pi}} = q \rangle$$

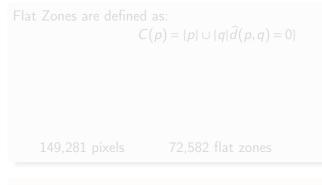
Dissimilarity metric

Dissimilarity measured between two pixels p to q is the lowest cost of a path from p to q, with the cost of a path being defined as the maximal dissimilarity between pairwise adjacent pixels along the path:

$$\widehat{d}(p,q) = \bigwedge_{\pi \in \Pi} \left\{ \bigvee_{i \in [1,...,N_{\pi}-1]} \left\{ d(p_i, p_{i+1}) \mid \langle p_i, p_{i+1} \rangle \text{ subchain of } \pi(p \rightsquigarrow q) \right\} \right\}$$

with Π the set of all possible path between p and q

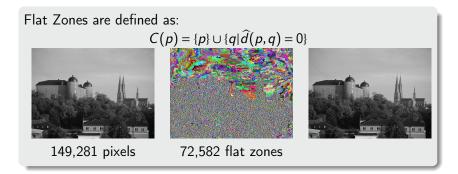
Superpixel approaches are useful operators for image simplification and segmentation (data reduction \rightarrow CPU reduction). MM offers several superpixel operators.



Flat zones induce heavy oversegmentation⇒ Unsuitable for efficient image simplification or segmentation

Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 4/23

Superpixel approaches are useful operators for image simplification and segmentation (data reduction \rightarrow CPU reduction). MM offers several superpixel operators.

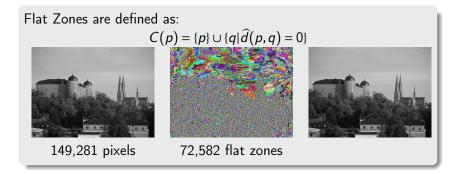


Flat zones induce heavy oversegmentation

 \Rightarrow Unsuitable for efficient image simplification or segmentation

Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 4/23

Superpixel approaches are useful operators for image simplification and segmentation (data reduction \rightarrow CPU reduction). MM offers several superpixel operators.



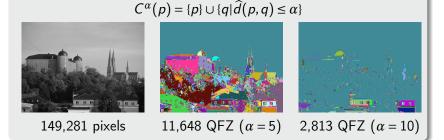
Flat zones induce heavy oversegmentation

⇒ Unsuitable for efficient image simplification or segmentation

Erhan Aptoula, Jonathan Weber, Sébastien Lefèvre Vectorial Quasi-flat Zones - 4/23

Quasi-Flat Zones α :

- introduction of a local variation criterion (α)
 - ⇒ produces wider zones



Quasi-Flat zones α reduce oversegmentation

⇒ quickly induces undersegmentation (chaining-effect)

Quasi-Flat Zones α :

- introduction of a local variation criterion (α)
 - ⇒ produces wider zones

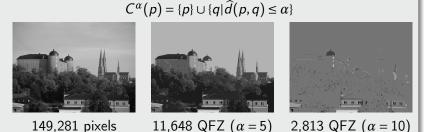
 $C^{\alpha}(p) = \{p\} \cup \{q | \widehat{d}(p,q) \le \alpha\}$

Quasi-Flat zones α reduce oversegmentation

⇒ quickly induces undersegmentation (chaining-effect)

Quasi-Flat Zones α :

- introduction of a local variation criterion (α)
 - ⇒ produces wider zones



Quasi-Flat zones α reduce oversegmentation

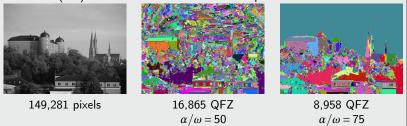
⇒ quickly induces undersegmentation (chaining-effect)

Quasi-flat zone α, ω :

- introduction of a global variation criterion (ω)
 - $\Rightarrow\,$ counters the chaining-effect
- Idea : find highest lpha that satisfies constraint ω

 $C^{\alpha,\omega}(p) = \max\{C^{\alpha'}(p) \mid \alpha' \leq \alpha \text{ and } R(C^{\alpha'}(p)) \leq \omega\}$

with $R(C^{\alpha})$ the maximal difference between pixels attributes of C^{α}



Quasi-Flat Zones α,ω greatly reduce oversegmentation ⇒ suffers less from undersegmentation

Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 6/23

Quasi-flat zone α, ω :

- introduction of a global variation criterion (ω)
 - $\Rightarrow\,$ counters the chaining-effect
- Idea : find highest α that satisfies constraint ω

$$C^{\alpha,\omega}(p) = \max\{C^{\alpha'}(p) \mid \alpha' \le \alpha \text{ and } R(C^{\alpha'}(p)) \le \omega\}$$

with $R(C^{\alpha})$ the maximal difference between pixels attributes of C^{α}

Quasi-Flat Zones α, ω greatly reduce oversegmentation \Rightarrow suffers less from undersegmentation

Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 6/23

Quasi-flat zone α, ω :

- introduction of a global variation criterion (ω)
 - $\Rightarrow\,$ counters the chaining-effect
- Idea : find highest α that satisfies constraint ω

$$C^{\alpha,\omega}(p) = \max\{C^{\alpha'}(p) \mid \alpha' \le \alpha \text{ and } R(C^{\alpha'}(p)) \le \omega\}$$

with $R(C^{\alpha})$ the maximal difference between pixels attributes of C^{α}

Quasi-Flat Zones α, ω greatly reduce oversegmentation

⇒ suffers less from undersegmentation

Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 6/23

What about QFZ in color images ?

 QFZ are well-defined for grayscale images as gray images are composed of ordered scalar values. In fact, QFZ needs :

- ordered values (search of the highest α)
- existence of a difference operator (computation of $\widehat{d}(p,q)$)

In color images, we are dealing with vector values that are no longer naturally ordered

 \Rightarrow QFZ extension to color images is not straightforward

What about QFZ in color images ?

 QFZ are well-defined for grayscale images as gray images are composed of ordered scalar values. In fact, QFZ needs :

- ordered values (search of the highest α)
- existence of a difference operator (computation of $\widehat{d}(p,q)$)

In color images, we are dealing with vector values that are no longer naturally ordered

 \Rightarrow QFZ extension to color images is not straightforward

State-of-the-art	Vectorial QFZ	

3 Vectorial Quasi-Flat Zones

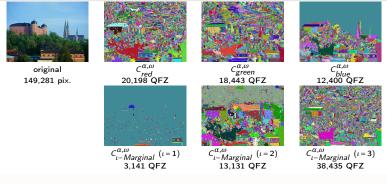
4 Experiments

5 Conclusion and Perspectives

Quasi-Marginal Approach [Weber, PhD Th., 2011]

Idea:

- Process QFZ marginally
- 2 Merge them using a voting mechanism (parameter ι)



 \Rightarrow Low ι values lead to undersegmentation

 \Rightarrow High ι values lead to oversegmentation

Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 9/23

Quasi-Marginal Approach [Weber, PhD Th., 2011]

Idea:

- Process QFZ marginally
- 2 Merge them using a voting mechanism (parameter ι)

original 149,281 pi×.

 $C_{red}^{\alpha,\omega}$ 20,198 QFZ

 $\overline{C_{\iota-Marginal}^{\alpha,\omega}}$ ($\iota=1$)

3,141 QFZ

 $C_{green}^{\alpha,\omega}$ 18,443 QFZ

 $C_{\iota-Marginal}^{\alpha,\omega}$ ($\iota = 2$)

13,131 QFZ

 $C_{blue}^{\alpha,\omega}$ 12,400 QFZ

 $\overline{C_{\iota-Marginal}^{\alpha,\omega}} (\iota=3)$ 38,435 QFZ

 \Rightarrow Low ι values lead to undersegmentation

 \Rightarrow High ι values lead to oversegmentation

Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 9/23

Quasi-Marginal Approach [Weber, PhD Th., 2011]

Idea:

- Process QFZ marginally
- 2 Merge them using a voting mechanism (parameter ι)

original 149,281 pix.

 $C_{red}^{\alpha,\omega}$ 20,198 QFZ

 $\overline{C_{\iota-Marginal}^{\alpha,\omega}}$ ($\iota=1$)

3,141 QFZ

 $C_{green}^{\alpha,\omega}$ 18,443 QFZ

 $C_{\iota-Marginal}^{\alpha,\omega}$ ($\iota = 2$)

13,131 QFZ

 $C_{blue}^{\alpha,\omega}$ 12,400 QFZ

 $\frac{C_{\iota-Marginal}^{\alpha,\omega}}{38,435} (\iota=3)$

- \Rightarrow Low ι values lead to undersegmentation
- \Rightarrow High ι values lead to oversegmentation

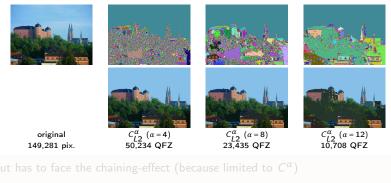
Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 9/23

Context

Customized metrics approach [Zanoguera, PhD Th., 2001]

Idea: Introduce a scalar metric to compare pixel values

 $\Rightarrow~$ e.g. L2 for RGB images



- \Rightarrow Hardly applicable to global range criterion ω
 - \Rightarrow Vector values are not ordered, so no min/max values
 - $\Rightarrow \omega$ computation is in quadratic complexity

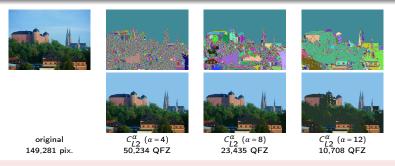
Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 10/23

Context

Customized metrics approach [Zanoguera, PhD Th., 2001]

Idea: Introduce a scalar metric to compare pixel values

 $\Rightarrow~$ e.g. L2 for RGB images



but has to face the chaining-effect (because limited to C^{α})

 \Rightarrow Hardly applicable to global range criterion ω

 \Rightarrow Vector values are not ordered, so no min/max values

 $\Rightarrow \omega$ computation is in quadratic complexity

Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 10/23

Idea: Introduce vectorial parameters, each criterion has to be satisfied independently for each channel: $\forall i \in [1, n], \forall p, q \in E, |f^i(p) - f^i(q)| \le \alpha_i \Leftrightarrow d(p, q) \le \alpha$

- ▲ How to order [2,1,1], [1,2,1] and [1,1,2]?
- ⇒ By considering only α of type [x, x, x]
- → Inducing a total ordering in this subspace, [0,0,0] < [1,1,1] < [2,2,2] < ...

Idea: Introduce vectorial parameters, each criterion has to be satisfied independently for each channel: $\forall i \in [1,n], \forall p, q \in E, |f^i(p) - f^i(q)| \le \alpha_i \Leftrightarrow d(p,q) \le \alpha$

- ▲ How to order [2,1,1], [1,2,1] and [1,1,2]?
- \Rightarrow By considering only α of type [x, x, x]
- ⇒ Inducing a total ordering in this subspace, [0,0,0] < [1,1,1] < [2,2,2] < ...

Idea: Introduce vectorial parameters, each criterion has to be satisfied independently for each channel: $\forall i \in [1,n], \forall p, q \in E, |f^i(p) - f^i(q)| \le \alpha_i \Leftrightarrow d(p,q) \le \alpha$

- \land How to order [2,1,1], [1,2,1] and [1,1,2]?
- \Rightarrow By considering only α of type [x, x, x]
- ⇒ Inducing a total ordering in this subspace, [0,0,0] < [1,1,1] < [2,2,2] < ...

Idea: Introduce vectorial parameters, each criterion has to be satisfied independently for each channel:

 $\forall i \in [1, n], \forall p, q \in E, |f^{i}(p) - f^{i}(q)| \le \alpha_{i} \Leftrightarrow d(p, q) \le \alpha$

- \land How to order [2,1,1], [1,2,1] and [1,1,2]?
- \Rightarrow By considering only α of type [x, x, x]
- ⇒ Inducing a total ordering in this subspace, [0,0,0] < [1,1,1] < [2,2,2] < ...

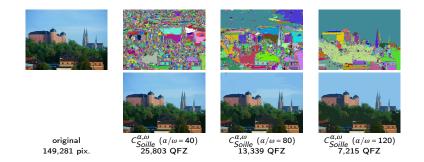
Idea: Introduce vectorial parameters, each criterion has to be satisfied independently for each channel:

 $\forall i \in [1, n], \forall p, q \in E, |f^i(p) - f^i(q)| \le \alpha_i \Leftrightarrow d(p, q) \le \alpha$

- \land How to order [2,1,1], [1,2,1] and [1,1,2]?
- \Rightarrow By considering only α of type [x, x, x]
- $\Rightarrow~$ Inducing a total ordering in this subspace, $[0,0,0] < [1,1,1] < [2,2,2] < \ldots$

Conclusion

Semi-vectorial approach [Soille, PAMI, 2008]

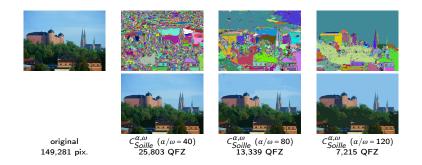


Applicable to a global range criterion but small search space for highest $\pmb{\alpha}$

- \wedge Only 256 possible lpha values instead of 16,777,216 colors in RGB images
- \Rightarrow As higher α means wider QFZ, this sub-quantization may hidden the best α values for oversegmentation reduction

Conclusion

Semi-vectorial approach [Soille, PAMI, 2008]



Applicable to a global range criterion but small search space for highest lpha

- \wedge Only 256 possible α values instead of 16,777,216 colors in RGB images
- \Rightarrow As higher α means wider QFZ, this sub-quantization may hidden the best α values for oversegmentation reduction

	Vectorial QFZ	

4 Experiments

Motivation

Using different α/ω values per channel:

- provides a higher level of customization
 - $\Rightarrow~$ tuned for application context
- provides a finer search space for $C^{\alpha,\omega}$
 - \Rightarrow wider QFZ (due to higher α for a given ω)

How to deal with vectorial α and ω ?

- \Rightarrow Modify pixel attribute difference \widehat{d} into \widehat{d}_{\leq} comparable with $\pmb{\alpha}$
- \Rightarrow Solution should be adapted to any arbitrary ordering (\leq)

Motivation

Using different α/ω values per channel:

- provides a higher level of customization
 - $\Rightarrow~$ tuned for application context
- provides a finer search space for $C^{\alpha,\omega}$
 - \Rightarrow wider QFZ (due to higher α for a given ω)

How to deal with vectorial $\boldsymbol{\alpha}$ and $\boldsymbol{\omega}$?

- \Rightarrow Modify pixel attribute difference \widehat{d} into \widehat{d}_{\preceq} comparable with $\pmb{\alpha}$
- $\Rightarrow\,$ Solution should be adapted to any arbitrary ordering (${\preceq})$

Context	Vectorial QFZ	

How to implement such \hat{d}_{\leq} ?

- ⇒ Rely on a rank operator such as rank_≤ : $T \rightarrow \mathbb{N}$ which associates each vector with its position in the space T w.r.t. ≤
- \Rightarrow This rank operator needs also to be applied to lpha

 $\forall p, q \in E, d_{\leq}(p,q) = |\operatorname{rank}_{\leq}(f(p)) - \operatorname{rank}_{\leq}(f(q))|$

Vectorial C^a

$$C^{\boldsymbol{\alpha}}_{\leq}(p) = \{p\} \cup \{q \mid \widehat{\mathbf{d}_{\leq}}(p,q) \leq \operatorname{rank}_{\leq}(\boldsymbol{\alpha})\}$$

Implementation :

- Transform color image in rank image (using precomputed look up table).
- Apply greylevel C^{α} on the rank image with $\alpha = rank_{\leq}(\alpha)$

	Vectorial QFZ	

How to implement such \hat{d}_{\leq} ?

- ⇒ Rely on a rank operator such as rank_≤ : $T \rightarrow \mathbb{N}$ which associates each vector with its position in the space T w.r.t. ≤
- \Rightarrow This rank operator needs also to be applied to lpha

$$\forall p, q \in E, d_{\leq}(p,q) = |\operatorname{rank}_{\leq}(f(p)) - \operatorname{rank}_{\leq}(f(q))|$$

Vectorial C^a

$$C^{\boldsymbol{\alpha}}_{\leq}(p) = \{p\} \cup \{q \mid \widehat{\mathbf{d}_{\leq}}(p,q) \leq \operatorname{rank}_{\leq}(\boldsymbol{\alpha})\}$$

Implementation :

- Transform color image in rank image (using precomputed look up table).
- Apply greylevel C^{α} on the rank image with $\alpha = rank_{\leq}(\alpha)$

Context	Vectorial QFZ	Conclusion

How to implement such \hat{d}_{\leq} ?

- ⇒ Rely on a rank operator such as rank_≤ : $T \rightarrow \mathbb{N}$ which associates each vector with its position in the space T w.r.t. ≤
- \Rightarrow This rank operator needs also to be applied to lpha

$$\forall p, q \in E, d_{\leq}(p,q) = |\operatorname{rank}_{\leq}(f(p)) - \operatorname{rank}_{\leq}(f(q))|$$

Vectorial C^{α}

$$C^{\boldsymbol{\alpha}}_{\leq}(\boldsymbol{p}) = \{\boldsymbol{p}\} \cup \{\boldsymbol{q} \mid \widehat{\mathbf{d}_{\leq}}(\boldsymbol{p}, \boldsymbol{q}) \leq \mathsf{rank}_{\leq}(\boldsymbol{\alpha})\}$$

Implementation :

- Transform color image in rank image (using precomputed look up table).
- Apply greylevel C^{α} on the rank image with $\alpha = rank_{\leq}(\alpha)$

Context	Vectorial QFZ	Conclusion

How to implement such \hat{d}_{\leq} ?

- ⇒ Rely on a rank operator such as rank_≤ : $T \rightarrow \mathbb{N}$ which associates each vector with its position in the space T w.r.t. ≤
- \Rightarrow This rank operator needs also to be applied to lpha

$$\forall p, q \in E, d_{\leq}(p,q) = |\operatorname{rank}_{\leq}(f(p)) - \operatorname{rank}_{\leq}(f(q))|$$

Vectorial C^{α}

$$C^{\boldsymbol{\alpha}}_{\leq}(p) = \{p\} \cup \{q \mid \widehat{\mathbf{d}_{\leq}}(p,q) \leq \operatorname{rank}_{\leq}(\boldsymbol{\alpha})\}$$

Implementation :

- **①** Transform color image in rank image (using precomputed look up table).
- 2 Apply greylevel C^{α} on the rank image with $\alpha = \operatorname{rank}_{\leq}(\alpha)$

	Vectorial QFZ	

Purely vectorial $C^{\alpha,\omega}$

/!

$$C_{\leq}^{\boldsymbol{\alpha},\boldsymbol{\omega}}(p) = \max\{C_{\leq}^{\boldsymbol{\alpha}'}(p) \mid \boldsymbol{\alpha}' \leq \boldsymbol{\alpha} \text{ and } R_{\leq}(C^{\boldsymbol{\alpha}'}(p)) \leq \operatorname{rank}_{\leq}(\boldsymbol{\omega})\}$$

Total vector ordering is needed for {\mathcal{a}} to find \mathcal{\alpha}'!

- Enables the computation of color QFZ using vector parameters
- Enables customization (inter-channel relation modeling, channel-specific parameters, ...)
- Preserves theoretical properties of QFZ
- Compatible with existing greylevel implementations
- A Parameter settings is not trivial
 - Choice of vectorial ordering
 - Setting of α and ω

	Vectorial QFZ	

Purely vectorial $C^{\alpha,\omega}$

$$C_{\leq}^{\boldsymbol{\alpha},\boldsymbol{\omega}}(p) = \max\{C_{\leq}^{\boldsymbol{\alpha}'}(p) \mid \boldsymbol{\alpha}' \leq \boldsymbol{\alpha} \text{ and } R_{\leq}(C^{\boldsymbol{\alpha}'}(p)) \leq \operatorname{rank}_{\leq}(\boldsymbol{\omega})\}$$

Total vector ordering is needed for $\{\boldsymbol{\alpha}\}$ to find $\boldsymbol{\alpha}'$!

- Enables the computation of color QFZ using vector parameters
- Enables customization (inter-channel relation modeling, channel-specific parameters, ...)
- Preserves theoretical properties of QFZ
- Compatible with existing greylevel implementations
- ▲ Parameter settings is not trivial
 - Choice of vectorial ordering
 - Setting of $\pmb{\alpha}$ and $\pmb{\omega}$

	Vectorial QFZ	Experiments	

2 State-of-the-art

3 Vectorial Quasi-Flat Zones

4 Experiments

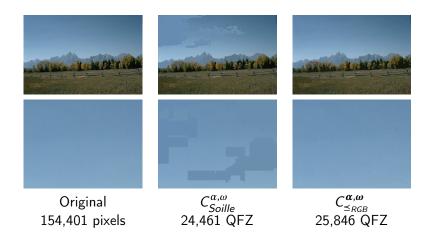
5 Conclusion and Perspectives

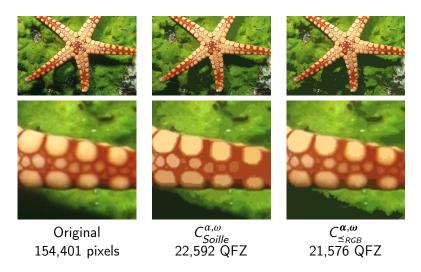
Data : Berkeley Segmentation Dataset **Ordering** : RGB L_2 norm (+ lexicographical comparison \leq_L to avoid preordering)

 $\forall \mathbf{v}, \mathbf{v}' \in \mathbb{R}^3, \ \mathbf{v} \leq_{rgb} \mathbf{v}' \Leftrightarrow [\|\mathbf{v}\|, v_1, v_2, v_3]^T \leq_L [\|\mathbf{v}'\|, v_1', v_2', v_3']^T$

Quality metric (segmentation task) :

- a set of reference regions is known
- *Maximal precision* (MP) ratio of well segmented pixels (following assignment of each QFZ to the most overlapping reference region)
- Oversegmentation ratio (OSR) ratio between # QFZ and # reference regions





Original 154,401 pixels

C^{*α,ω*} ≤_{*RGB*} 31,155 QFZ

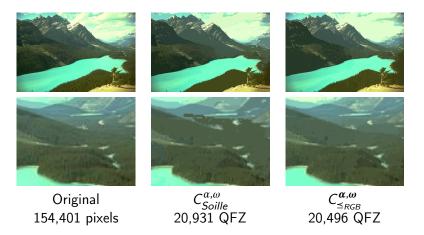
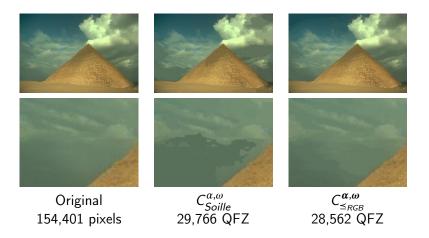
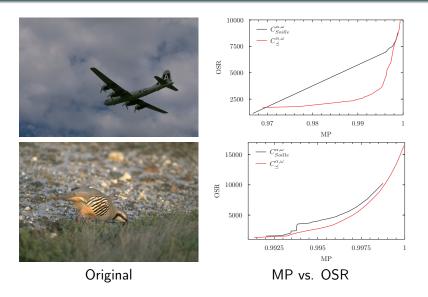


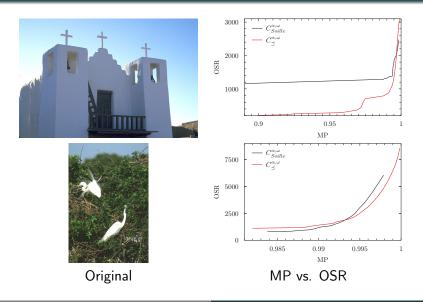
Image Simplification on Berkeley Segmentation Dataset



Segmentation on Berkeley Segmentation Dataset



Segmentation on Berkeley Segmentation Dataset



Erhan Aptoula, Jonathan Weber, <u>Sébastien Lefèvre</u> Vectorial Quasi-flat Zones - 20/23

	Vectorial QFZ	Conclusion

2 State-of-the-art

3 Vectorial Quasi-Flat Zones

4 Experiments

- Our approach achieves good results:
 - Image simplification
 - Image segmentation
- Preserves theoretical properties of QFZ
- Straightforward implementation from grey-level version
- But choice of vector ordering / parameters is not intuitive

Perspectives

- Automatically determine:
 - Optimal color ordering
 - Vector parameters
- Achieve wider and more rigorous experimentation

Vectorial QFZ

Conclusion

- Our approach achieves good results:
 - Image simplification
 - Image segmentation
- Preserves theoretical properties of QFZ
- Straightforward implementation from grey-level version
- But choice of vector ordering / parameters is not intuitive

Perspectives

- Automatically determine:
 - Optimal color ordering
 - Vector parameters
- Achieve wider and more rigorous experimentation

Vectorial QFZ

Conclusion

- Our approach achieves good results:
 - Image simplification
 - Image segmentation
- Preserves theoretical properties of QFZ
- Straightforward implementation from grey-level version
- But choice of vector ordering / parameters is not intuitive

Perspectives

- Automatically determine:
 - Optimal color ordering
 - Vector parameters
- Achieve wider and more rigorous experimentation

Vectorial QFZ

Conclusion

- Our approach achieves good results:
 - Image simplification
 - Image segmentation
- Preserves theoretical properties of QFZ
- Straightforward implementation from grey-level version
- But choice of vector ordering / parameters is not intuitive

Perspectives

- Automatically determine:
 - Optimal color ordering
 - Vector parameters
- Achieve wider and more rigorous experimentation

- Our approach achieves good results:
 - Image simplification
 - Image segmentation
- Preserves theoretical properties of QFZ
- Straightforward implementation from grey-level version
- But choice of vector ordering / parameters is not intuitive

Perspectives

- Automatically determine:
 - Optimal color ordering
 - Vector parameters
- Achieve wider and more rigorous experimentation
- Embed this development into framework of morphological trees

- Our approach achieves good results:
 - Image simplification
 - Image segmentation
- Preserves theoretical properties of QFZ
- Straightforward implementation from grey-level version
- But choice of vector ordering / parameters is not intuitive

Perspectives

- Automatically determine:
 - Optimal color ordering
 - Vector parameters
- Achieve wider and more rigorous experimentation
- Embed this development into framework of morphological trees

- Our approach achieves good results:
 - Image simplification
 - Image segmentation
- Preserves theoretical properties of QFZ
- Straightforward implementation from grey-level version
- But choice of vector ordering / parameters is not intuitive

Perspectives

- Automatically determine:
 - Optimal color ordering
 - Vector parameters
- Achieve wider and more rigorous experimentation
- Embed this development into framework of morphological trees

Vectorial QFZ

Experiment

Conclusion

Thank you for your attention

Main References

Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (November 2007)

Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (July 2008)

Weber, J.: Segmentation morphologique interactive pour la fouille de séquences vidéo. Ph.D. thesis, Université de Strasbourg, France (2011)

Zanoguera, F.: Segmentation interactive d'images fixes et de séquences vidéo basée sur des hierarchies de partitions. Ph.D. thesis, Ecole des Mines de Paris (2001)