Context

Interactive Video Segmentation based on Quasi-Flat Zones

Jonathan Weber, Sébastien Lefèvre, Pierre Gançarski

ISPA 2011 7th International Symposium on Image and Signal Processing and Analysis Dubrovnik, Croatia

September 5th, 2011

- 2 Video Quasi-Flat zones
- Interactive segmentation
- 4 Results
- 5 Conclusion

2 Video Quasi-Flat zones

- 2 Video Quasi-Flat zones
- Interactive segmentation

- 2 Video Quasi-Flat zones
- Interactive segmentation

- 2 Video Quasi-Flat zones
- Interactive segmentation

Mass of video data

- Nowadays
 - YouTube serves up 3 billions video clips per day
- In the future (according to CISCO)
 - 2012: video will represent 50% of Internet traffic
 - 2015: 100 millions minutes of video will be broadcasted each second

- Often need prior segmentation
 - To use elements more semantically meaningful than pixels (regions, objects ...)

Mass of video data

- Nowadays
 - YouTube serves up 3 billions video clips per day
- In the future (according to CISCO)
 - 2012: video will represent 50% of Internet traffic
 - 2015: 100 millions minutes of video will be broadcasted each second

- Often need prior segmentation
 - To use elements more semantically meaningful than pixels (regions, objects ...)

Mass of video data

- Nowadays
 - YouTube serves up 3 billions video clips per day
- In the future (according to CISCO)
 - 2012: video will represent 50% of Internet traffic
 - 2015: 100 millions minutes of video will be broadcasted each second

- Often need prior segmentation
 - To use elements more semantically meaningful than pixels (regions, objects ...)

Mass of video data

- Nowadays
 - YouTube serves up 3 billions video clips per day
- In the future (according to CISCO)
 - 2012: video will represent 50% of Internet traffic
 - 2015: 100 millions minutes of video will be broadcasted each second

- Often need prior segmentation
 - To use elements more semantically meaningful than pixels (regions, objects ...)

Context: Problems induced by video segmentation

Video represents a huge data volume

- ullet 1 HD video second \simeq 178 MB (uncompressed)
 - \Rightarrow High computationnal cost
 - \Rightarrow High memory cost

Semantic gap

 Difference between numeric computer representation and human-being video content interpretation

 \Rightarrow Automatic video segmentation is a complex task

Context: Problems induced by video segmentation

Video represents a huge data volume

- 1 HD video second \simeq 178 MB (uncompressed)
 - \Rightarrow High computationnal cost
 - \Rightarrow High memory cost

Semantic gap

 Difference between numeric computer representation and human-being video content interpretation

 \Rightarrow Automatic video segmentation is a complex task

Context: Problems induced by video segmentation

Video represents a huge data volume

- ullet 1 HD video second \simeq 178 MB (uncompressed)
 - \Rightarrow High computationnal cost
 - \Rightarrow High memory cost

Semantic gap

- Difference between numeric computer representation and human-being video content interpretation
 - \Rightarrow Automatic video segmentation is a complex task

Context: Proposed solutions

Data volume reduction

 Apply video segmentation process on an oversegmentation of the video using quasi-flat zones and not anymore on pixels

User involvment

 Interactively involve user in the segmentation process to bridge the semantic gap

Context: Proposed solutions

Data volume reduction

 Apply video segmentation process on an oversegmentation of the video using quasi-flat zones and not anymore on pixels

User involvment

 Interactively involve user in the segmentation process to bridge the semantic gap

Context: Proposed solutions

Data volume reduction

• Apply video segmentation process on an oversegmentation of the video using quasi-flat zones and not anymore on pixels

User involvment

 Interactively involve user in the segmentation process to bridge the semantic gap

2 Video Quasi-Flat zones

Interactive segmentation

Flat zones (connected components)

- Flat zones: connected set of pixels with same values
- Extreme oversegmentation

Quasi-Flat zones: Generalization of flat zones

- Quasi-Flat zones: connected set of pixels with close values
- Closeness depends on parameters
 - local range α: maximum difference between neighbouring pixels values
 - global range ω : maximum difference between all pixels values

Keep the relative good frontiers from flat zones

Flat zones (connected components)

- Flat zones: connected set of pixels with same values
- Extreme oversegmentation

Quasi-Flat zones: Generalization of flat zones

- Quasi-Flat zones: connected set of pixels with close values
- Closeness depends on parameters
 - local range α: maximum difference between neighbouring pixels values
 - global range ω : maximum difference between all pixels values

• Keep the relative good frontiers from flat zones

Flat zones (connected components)

- Flat zones: connected set of pixels with same values
- Extreme oversegmentation

Quasi-Flat zones: Generalization of flat zones

- Quasi-Flat zones: connected set of pixels with close values
- Closeness depends on parameters
 - local range α : maximum difference between neighbouring pixels values
 - global range ω : maximum difference between all pixels values

Keep the relative good frontiers from flat zones

Flat zones (connected components)

- Flat zones: connected set of pixels with same values
- Extreme oversegmentation

Quasi-Flat zones: Generalization of flat zones

- Quasi-Flat zones: connected set of pixels with close values
- Closeness depends on parameters
 - local range α : maximum difference between neighbouring pixels values
 - global range ω : maximum difference between all pixels values

Keep the relative good frontiers from flat zones

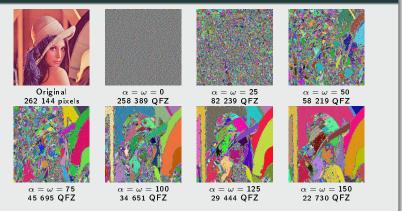
Flat zones (connected components)

- Flat zones: connected set of pixels with same values
- Extreme oversegmentation

Quasi-Flat zones: Generalization of flat zones

- Quasi-Flat zones: connected set of pixels with close values
- Closeness depends on parameters
 - local range α: maximum difference between neighbouring pixels values
 - global range ω : maximum difference between all pixels values

• Keep the relative good frontiers from flat zones


Flat zones (connected components)

- Flat zones: connected set of pixels with same values
- Extreme oversegmentation

Quasi-Flat zones: Generalization of flat zones

- Quasi-Flat zones: connected set of pixels with close values
- Closeness depends on parameters
 - local range α: maximum difference between neighbouring pixels values
 - global range ω : maximum difference between all pixels values
- Keep the relative good frontiers from flat zones

Results

Straight 3D extension

- Considering a 3D neighbourhood (X,Y,T) instead of the 2D neighbourhood (X,Y) used for still images
 - + trivial extension
 - weak results

2D+t/t+2D extension

- Produce QFZ sequentially on spatial (X,Y) and temporal (T) dimensions
 - + better results
 - less trivial

Straight 3D extension

- Considering a 3D neighbourhood (X,Y,T) instead of the 2D neighbourhood (X,Y) used for still images
 - + trivial extension
 - weak results

2D+t/t+2D extension

- Produce QFZ sequentially on spatial (X,Y) and temporal (T) dimensions
 - + better results
 - less trivial

Straight 3D extension

- Considering a 3D neighbourhood (X,Y,T) instead of the 2D neighbourhood (X,Y) used for still images
 - + trivial extension
 - weak results

2D+t/t+2D extension

- Produce QFZ sequentially on spatial (X,Y) and temporal (T) dimensions
 - + better results
 - less trivial

2D+t/t+2D Quasi-flat zones framework

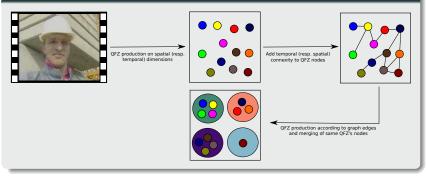
Quasi-Flat Zones extended to Video

2D+t/t+2D Quasi-flat zones framework

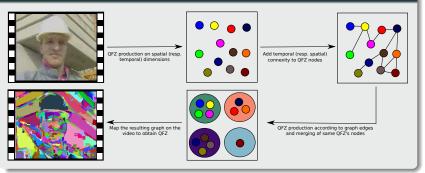
QFZ production on spatial (resp. temporal) dimensions

2D+t/t+2D Quasi-flat zones framework

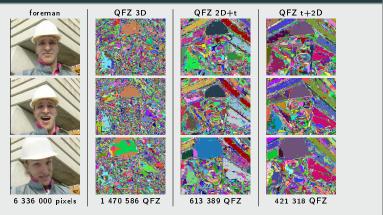
QFZ production on spatial (resp.



Add temporal (resp. spatial) connexity to QFZ nodes

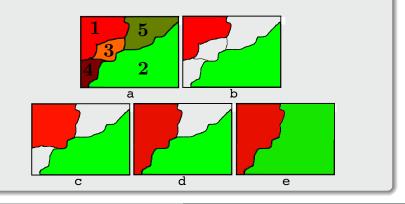

Jonathan Weber, Sébastien Lefèvre, Pierre Gançarski 👘 Interactive Video Segmentation based on QFZ - 10/22

2D+t/t+2D Quasi-flat zones framework

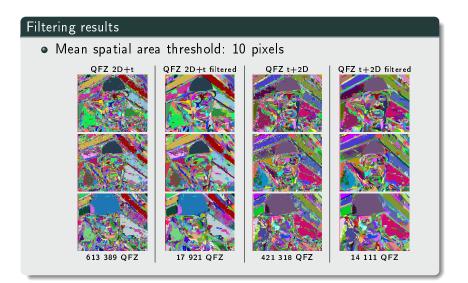

Quasi-Flat Zones extended to Video

2D+t/t+2D Quasi-flat zones framework

Quasi-Flat Zones extended to Video

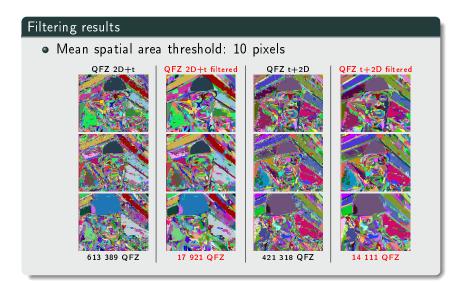

Resul<u>ts</u>

Quasi-Flat Zones extended to Video


Oversegmentation reduction

- Filtering QFZ
 - Criterion: Threshold on mean spatial size of QFZ
 - Reconstruction: Seeded Region Growing on QFZ

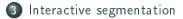
Jonathan Weber, Sébastien Lefèvre, Pierre Gançarski


Quasi-Flat Zones extended to Video

Jonathan Weber, Sébastien Lefèvre, Pierre Gançarski

Interactive Video Segmentation based on QFZ - 13/22

Quasi-Flat Zones extended to Video


Jonathan Weber, Sébastien Lefèvre, Pierre Gançarski

Interactive Video Segmentation based on QFZ - 13/22

	Interactive segmentation	

Constraints

- Interaction has to be intuitive
- Requiring time for the user has to be minimal

- Marker-drawing interaction
- Interactive segmentation based on video QFZ
 - QFZ production made offline
 - Seeded Region growing algorithm used to merge QFZ according to markers

Constraints

- Interaction has to be intuitive
- Requiring time for the user has to be minimal

- Marker-drawing interaction
- Interactive segmentation based on video QFZ
 - QFZ production made offline
 - Seeded Region growing algorithm used to merge QFZ according to markers

Constraints

- Interaction has to be intuitive
- Requiring time for the user has to be minimal

- Marker-drawing interaction
- Interactive segmentation based on video QFZ
 - QFZ production made offline
 - Seeded Region growing algorithm used to merge QFZ according to markers

Constraints

- Interaction has to be intuitive
- Requiring time for the user has to be minimal

- Marker-drawing interaction
- Interactive segmentation based on video QFZ
 - QFZ production made offline
 - Seeded Region growing algorithm used to merge QFZ according to markers

Constraints

- Interaction has to be intuitive
- Requiring time for the user has to be minimal

- Marker-drawing interaction
- Interactive segmentation based on video QFZ
 - QFZ production made offline
 - Seeded Region growing algorithm used to merge QFZ according to markers

Context

'ideo Quasi-Flat zones

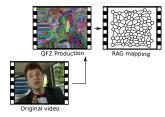
Interactive segmentation

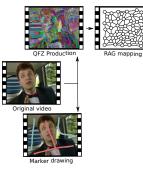
Re

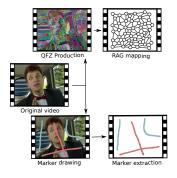
Conclusion

Interactive Segmentation: Framework

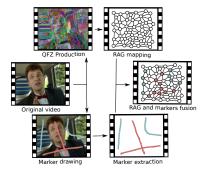
Original video

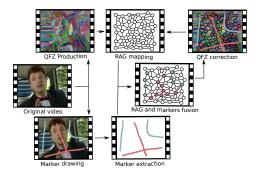

Interactive Segmentation: Framework

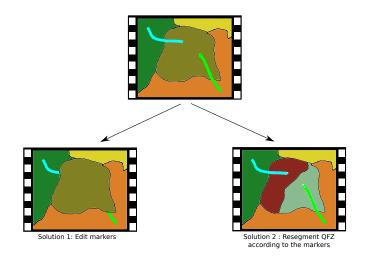

QFZ Production

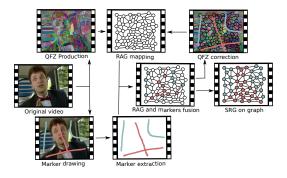


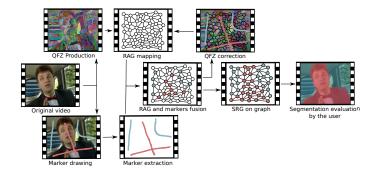
Jonathan Weber, Sébastien Lefèvre, Pierre Gançarski Interactive Video Segmentation based on QFZ - 16/22



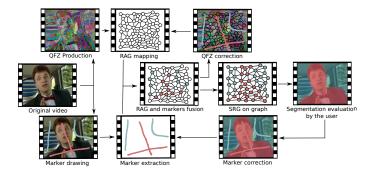

Conclusion



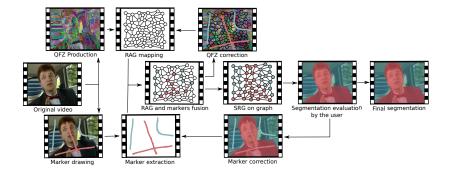

Conclusion



Conclusion



Conclusion


Result

Conclusion

Res

Conclusion

	Results	

Computing time

Method	α, ω	# QFZ	Computing time in ms			
Method			Offline	Online (per frame)		
	10	28 612	44 390	528 (1.39)		
MBQFZ 2D+t	20	30 671	35 510	550 (1.44)		
	30	27 713	38 762	508 (1.33)		
$area^* = 10$	40	22 202	43 280	364 (0.96)		
	50	18 501	46 343	326 (0.86)		
	10	3 772	44 781	108 (0.28)		
MBQFZ t+2D	20	4 713	32 080	123 (0.32)		
	30	4 649	26 957	116 (0.30)		
$area^* = 10$	40	3 842	26 128	107 (0.28)		
	50	3 147	25 133	98 (0.26)		
SRG	-	-	0	56 636 (148.65)		
MBWS	-	_	3 354	17 312 (45.44)		

Offline and online computation times required to process the *carphone* sequence (9 656 064 pixels, 176×144 on 381 frames).

<u>Jonathan Weber</u>, Sébastien Lefèvre, Pier<u>re Gançarski</u>

Interactive Video Segmentation based on QFZ - 18/22

Conclusion

Precision comparison

		area*	Jaccard-Index			
Method	α, ω		carphone		foreman	
			Set 1	Set 2	Set 1	Set 2
MBQFZ 2D+t	30	10	0.782	0.905	0.710	0.952
	50	50	0.825	0.910	0.674	0.884
	90	50	0.793	0.908	0.791	0.859
MBQFZ t+2D	20	60	0.767	0.928	0.695	0.944
	40	100	0.749	0.925	0.656	0.940
	100	70	0.781	0.919	0.637	0.935
SRG	-	-	0.641	0.548	0.529	0.400
MBWS	-	-	0.749	0.897	0.634	0.946

Jonathan Weber, Sébastien Lefèvre, Pierre Gançarski

Interactive Video Segmentation based on QFZ - 19/22

		Conclusion

Interactive video segmentation driven by QFZ

- efficient reduction of the input data space
- personalized segmentation from iterative user feedback
- low online computational cost during iterative steps

- application to other data spaces (e.g., optical flow)
- extension to cosegmentation (i.e., segment a complete video dataset from a few user-driven segmentations)

Interactive video segmentation driven by QFZ

- efficient reduction of the input data space
- personalized segmentation from iterative user feedback
- low online computational cost during iterative steps

- application to other data spaces (e.g., optical flow)
- extension to cosegmentation (i.e., segment a complete video dataset from a few user-driven segmentations)

Interactive video segmentation driven by QFZ

- efficient reduction of the input data space
- personalized segmentation from iterative user feedback

low online computational cost during iterative steps

- application to other data spaces (e.g., optical flow)
- extension to cosegmentation (i.e., segment a complete video dataset from a few user-driven segmentations)

Interactive video segmentation driven by QFZ

- efficient reduction of the input data space
- personalized segmentation from iterative user feedback
- low online computational cost during iterative steps

- application to other data spaces (e.g., optical flow)
- extension to cosegmentation (i.e., segment a complete video dataset from a few user-driven segmentations)

Interactive video segmentation driven by QFZ

- efficient reduction of the input data space
- personalized segmentation from iterative user feedback
- low online computational cost during iterative steps

- application to other data spaces (e.g., optical flow)
- extension to cosegmentation (i.e., segment a complete video dataset from a few user-driven segmentations)

Interactive video segmentation driven by QFZ

- efficient reduction of the input data space
- personalized segmentation from iterative user feedback
- low online computational cost during iterative steps

- application to other data spaces (e.g., optical flow)
- extension to cosegmentation (i.e., segment a complete video dataset from a few user-driven segmentations)

j.weber@unistra.fr